首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  国内免费   1篇
林业   1篇
农学   1篇
基础科学   1篇
  20篇
综合类   5篇
农作物   5篇
水产渔业   1篇
畜牧兽医   10篇
植物保护   5篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2007年   1篇
  2006年   4篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
12.
Micrometeorological variables measured in the BIOSPHERE-2 Center (B2C) enclosed rain forest biome for 1 year were compared with similar measurements made in the Amazon rain forest. In the B2C rain forest, the overlying glass and supporting structure significantly reduces (by approximately a factor of two) the incoming solar radiation. Monthly mean values of above-canopy and within-canopy air temperature, vapor pressure, and vapor pressure deficit are reasonably similar to those of the Amazon rain forest, but there are marked differences in the above-canopy values of these variables in the Arizona summer. Monthly mean diurnal trends also show significant differences. Measurements of vertical air temperature gradient clearly showed two very distinct environments in the 27.4 m high rain forest dome during daylight hours. There is a comparatively cool and fairly well-mixed environment (which is reasonably similar to that found in a natural rain forest) below about 10 m and a hot, thermally stable environment above about 15 m. The nature of the atmospheric turbulence within the B2C rain forest also is significantly different from that normally found in natural rain forests. There is little turbulent mixing above the forest canopy in this enclosed environment. These findings are important for guiding the operation and use of this experimental rain forest facility in future research and for understanding how the rain forest biome functions in an enclosed environment.  相似文献   
13.
Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-dominated grassland respond to summer rain events,an LI 6 400 gas exchange system was used to measure the leaf gas exchange and plant canopy chambers were used to measure net ecosystem CO2exchange(NEE) and ecosystem respiration(Reco), which were made sequentially during periods before rain(dry) and after rain(wet). Gross ecosystem photosynthesis(GEP) was estimated from NEE and Reco fluxes, and light use efficiency parameters were estimated using a rectangular hyperbola model. Prior to the monsoon rain, grassland biomass was non-green and dry exhibiting positive NEE(carbon source) and low GEP values during which the soil water became increasingly scarce. An initial rain pulse(60 mm) increased the NEE from pre-monsoon levels to negative NEE(carbon gain) with markedly higher GEP and increased green biomass. The leaf photosynthesis and leaf stomatal conductance were also improved substantially. The maximum net CO2uptake(i.e.,negative NEE) was sustained in the subsequent period due to multiple rain events. As a result, the grassland acted as a net carbon sink for 20 d after first rain. With cessation of rain(drying cycle), net CO2 uptake was reduced to lower values. High sensitivity of this grassland to rain suggests that any decrease in precipitation in summer may likely affect the carbon sequestration of the semiarid ecosystem.  相似文献   
14.
An in vitro study was conducted to quantitatively investigate the metabolism of pipecolic acid (Pip), a neuromodulator, by mixed rumen bacteria (B), mixed rumen protozoa (P), a combination of B and P (BP), species‐enriched rumen protozoal suspension (Polyplastron sp., Diploplastron sp., entodinia and Entodinium caudatum) and pure cultures of several isolates of rumen bacteria (Prevetolla bryantii, Prevetolla albensis, Streptococcus bovis, Veillonella parvula, Megasphaera elsdenii and Ruminococcus albus). Only P produced Pip from L‐lysine (1.0 mmol/L L‐Lys) at a rate of 83.5 ± 1.6 µmol/L/h and even in BP, Pip was produced from L‐Lys by P and increased at a rate of 31.2 ± 3.8 µmol/L/h. Pip production by P was highest when the substrate (L‐Lys) concentration was 6 mmol/L and then the rate was 580 ± 36 µmol/L/h. Pipecolic acid production by P suspension enriched with different species of protozoa showed that Polyplastron sp. had the highest Pip production rate of 0.907 ± 0.092 µmol/L/mg protozoal protein per h, and Diploplastron sp. had the lowest rate of 0.55 ± 0.13 µmol/L/mg protozoal protein per h. The addition of D‐Lys (1.0 mmol/L) as a substrate to the P suspension revealed that P were also able to produce Pip from D‐Lys, though at a lower rate (1/3) compared with L‐Lys (1.0 mmol/L), suggesting the presence of epimerases in P. It was confirmed that B were unable to produce Pip from L‐ or D‐Lys. Only B degraded Pip (1.0 mmol/L) after a lag phase at a rate of 56.0 ± 1.5 µmol/L/h. The B suspension was able to degrade D‐Lys, though the products were not identified. Pip degradation by pure culture of some species of rumen bacteria showed that P. bryantii and R. albus had the highest rate followed by P. albensis, S. bovis and M. elsdenii with a low rate of Pip degradation. Veillonella parvula showed no ability to degrade Pip. The results suggest that a fairly large proportion of rumen‐produced Pip is likely to be absorbed by the host animal before degradation by rumen bacteria.  相似文献   
15.
Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (NE) was analyzed.Growth performance,measured in terms of fresh weight,dry weight and lengths of root and shoot,was higher in N-efficient than in N-inefficient rice genotypes at low N level.Of these 10 genotypes,Suraksha was identified as the most N-efficient,while Vivek Dhan the most N-inefficient.To find out the physiological basis of this difference,the nitrate uptake rate of root and the activities of nitrate assimilatory enzymes in leaves of N-efficient and N-inefficient rice genotypes were studied.Uptake experiments revealed the presence of two separate nitrate transporter systems mediating high-and low-affinity nitrate uptake.Interestingly,the nitrate uptake by the roots of Suraksha is mediated by both high-and low-affinity nitrate transporter systems,while that of Vivek Dhan by only low-affinity nitrate transporter system.Study of the activities and expression levels of nitrate assimilatory enzymes in N-efficient and N-inefficient rice genotypes showed that nitrate reductase (NR) and glutamine synthetase (GS) play important roles in N assimilation under low-nitrogen conditions.  相似文献   
16.
17.
Sea cucumbers and their extracts have gained immense popularity and interest among researchers and nutritionists due to their nutritive value, potential health benefits, and use in the treatment of chronic inflammatory diseases. Many areas of the world use sea cucumbers in traditional foods and folk medicine. Though the actual components and their specific functions still remain to be investigated, most sea cucumber extracts are being studied for their anti-inflammatory functions, immunostimulatory properties, and for cancer prevention and treatment. There is large scope for the discovery of additional bioactive, valuable compounds from this natural source. Sea cucumber extracts contain unique components, such as modified triterpene glycosides, sulfated polysaccharides, glycosphingolipids, and esterified phospholipids. Frondanol A5, an isopropyl alcohol/water extract of the enzymatically hydrolyzed epithelia of the edible North Atlantic sea cucumber, Cucumaria frondosa, contains monosulfated triterpenoid glycoside Frondoside A, the disulfated glycoside Frondoside B, the trisulfated glycoside Frondoside C, 12-methyltetradecanoic acid, eicosapentaenoic acid, and fucosylated chondroitin sulfate. We have extensively studied the efficacy of this extract in preventing colon cancer in rodent models. In this review, we discuss the anti-inflammatory, immunostimulatory, and anti-tumor properties of sea cucumber extracts.  相似文献   
18.
Nitrogen controls, on the seasonal and inter-annual variability of net ecosystem productivity (NEP) in a western temperate conifer forest in British Columbia, Canada, were simulated by a coupled carbon and nitrogen (C&N) model. The model was developed by incorporating plant–soil nitrogen algorithms in the Carbon-Canadian Land Surface Scheme (C-CLASS). In the coupled C&N-CLASS, the maximum carboxylation rate of Rubisco (Vcmax) is determined non-linearly from the modelled leaf Rubisco-nitrogen, rather than being prescribed. Hence, variations in canopy assimilation and stomatal conductance are sensitive to leaf nitrogen status through the Rubisco enzyme. The plant–soil nitrogen cycle includes nitrogen pools from photosynthetic enzymes, leaves and roots, as well as organic and mineral reservoirs from soil, which are generated, exchanged, and lost by biological fixation, atmospheric deposition, fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. Model output was compared with eddy covariance flux measurements made over a 5-year period (1998–2002). The model performed very well in simulating half-hourly and monthly mean NEP values for a range of environmental conditions observed during the 5 years. C&N-CLASS simulated NEP values were 274, 437, 354, 352 and 253 g C m−2 for 1998–2002, compared to observed NEP values of 269, 360, 381, 418 and 264 g C m−2, for the respective years. Compared to the default C-CLASS, the coupled C&N model showed improvements in simulating the seasonal and annual dynamics of carbon fluxes in this forest. The nitrogen transformation to soil organic forms, mineralization, plant nitrogen uptake and leaf Rubisco-nitrogen concentration patterns were strongly influenced by seasonal and annual temperature variations. In contrast, the impact of precipitation was insignificant on the overall forest nitrogen budget. The coupled C&N modelling framework will help to evaluate the impact of nitrogen cycle on terrestrial ecosystems and its feedbacks on Earth's climate system.  相似文献   
19.
Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity. Among various abiotic factors affecting plant photosynthesis, light serves as an important factor that drives carbon metabolism in plants and supports life on earth. The two components of light(light quality and light intensity) greatly affect plant photosynthesis and other plant's morphological, physiological and biochemical parameters. The response of plants to different spectral radiations and intensities differs in various species and also depends on growing conditions. To date, much research has been conducted regarding how different spectral radiations of varying intensity can affect plant growth and development. This review is an effort to briefly summarize the available information on the effects of light components on various plant parameters such as stem and leaf morphology and anatomy, stomatal development, photosynthetic apparatus, pigment composition, reactive oxygen species(ROS) production, antioxidants, and hormone production.  相似文献   
20.
Coccinella septempunctata L. (Coleoptera: Coccinellidae) is a natural enemy of several important pests. This biocontrol agent is also a host for different parasitoids. Little is known about the parasitoid complex of C. septempunctata in Pakistan. The authors identified Oomyzus scaposus (Thomson, 1878) (Hymenoptera: Eulophidae) as a larval-pupal parasitoid of C. septempunctata in the district of Sargodha, Punjab, Pakistan. Out of 36 C. septempunctata pupae collected, 58.3% were parasitized by O. scaposus. This study documents the first record of O. scaposus parasitizing C. septempunctata in Pakistan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号