首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   8篇
  国内免费   1篇
林业   3篇
  1篇
综合类   24篇
农作物   2篇
水产渔业   1篇
畜牧兽医   55篇
植物保护   2篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   7篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   9篇
  2003年   1篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
11.
12.
13.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   
14.

Background  

Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis) and the two-spotted spider mite (Tetranychus urticae).  相似文献   
15.
The purpose of this study was to assess the effects of four anesthetic protocols on normal canine brain uptake of 2‐deoxy‐2‐[18F]fluoro‐d ‐glucose (FDG) using positron emission tomography/computed tomography (PET/CT). Five clinically normal beagle dogs were anesthetized with (1) propofol/isoflurane, (2) medetomidine/pentobarbital, (3) xylazine/ketamine, and (4) medetomidine/tiletamine–zolazepam in a randomized cross‐over design. The standard uptake value (SUV) of FDG was obtained in the frontal, parietal, temporal and occipital lobes, cerebellum, brainstem and whole brain, and compared within and between anesthetic protocols using the Friedman test with significance set at P<0.05. Significant differences in SUVs were observed in various part of the brain associated with each anesthetic protocol. The SUV for the frontal and occipital lobes was significantly higher than in the brainstem in all dogs. Dogs receiving medetomidine/tiletamine–zolazepam also had significantly higher whole brain SUVs than the propofol/isoflurane group. We concluded that each anesthetic protocol exerted a different regional brain glucose uptake pattern. As a result, when comparing brain glucose uptake using PET/CT, one should consider the effects of anesthetic protocols on different regions of the glucose uptake in the dog's brain.  相似文献   
16.
An 8‐year‐old Shih Tzu developed abdominal pain and hyperglobulinemia. A round splenic mass was noted radiographically and sonographically. The patient was evaluated by fluorodeoxyglucose positron emission tomography coupled with computed tomography (FDG‐PET/CT). There was no evidence of metastasis or bone marrow involvement on PET/CT images. The standardized uptake value (SUV) of the splenic mass was increased over the reference range (SUV=4.83). The patient was diagnosed as splenic extramedullary plasmacytoma through immunohistopathologic study. After the splenectomy, the globulin level normalized and the patient is alive without complications.  相似文献   
17.
18.
19.
20.
Summary The objectives of this research were to investigate the proportion of decayed wood in mature aspen stems, its chemical composition and its potential utility as a fuel or as a substrate for conversion to fine chemicals as part of an integrated utilization scheme. Three sound and ten decayed aspen stems were sampled from a boreal forest site. Stem analysis indicate that on average, 20% of the merchantable stem volume was in advanced decay and that considerable sound wood recovery was possible. Wood specific gravity and chemical composition were determined. The holocellulose content (volumetric basis) in advanced decayed wood was reduced by 67%. Thermal analysis of the wood using a differential scanning calorimeter provided graphical evidence of a different sequence of events occurring during the combustion of decayed wood and a resulting heat content per unit weight that was 40% higher than that of sound aspen wood. A higher degree of enzymatic hydrolysis was attainable with white-rotted aspen wood. Approximately 62% of the theoretical glucose yield was obtained from decayed aspen wood after alkali-peroxide pretreatment followed by a 12 hour hydrolysis using technical grade enzymes. The above information is used to elucidate future opportunities for wood recovery and energy production from decayed wood resources.The authors would like to thank the Ontario Ministry of Natural Resources, Kirkland Lake for their cooperation; and for the technical assistance by Sally Krigstin, John Leigh, Samir Konar, Ganesh Deka and Doug Charles. We would also like to thank Dr. Morris Wayman, University of Toronto, for his advice and inspiration. We are especially grateful to the following persons and companies for supplying us with enzymes and their associated technical literature: Mr. John Bayard of Van Waters & Rogers Ltee, Canada, representing NOVO Industri, Denmark; Mr. Ian Hodge representing the Miles Biotechnology Group, Canada; and Dr. Gunther Eckert, B.A.S.F., Germany for obtaining and forwarding the products and information of Rohm GmbH, Germany. This work has been partially funded by the Edward Johnson Fellowship, University of Toronto  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号