首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
农学   8篇
  2篇
综合类   81篇
农作物   7篇
畜牧兽医   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   15篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   2篇
  2012年   4篇
  2011年   2篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1997年   2篇
排序方式: 共有99条查询结果,搜索用时 390 毫秒
61.
从国际水稻所引进了296份籼稻微核心种质,分别在三亚、深圳、杭州和荆州考察了该套核心种质的外观品质和加工品质,并筛选出优质种质资源。结果表明,有8个品种在三亚表现为优质,36个品种在深圳表现为优质,32个品种在杭州表现为优质,24个品种在荆州表现为优质。其中,IR120982、IR122232和IR117277在多种环境条件下均表现为优质,为中国南方稻区优质稻品种选育提供了优质供体亲本。  相似文献   
62.
对大豆、山药、玉米、绿豆等作物施用3种不同含硒量的富硒矿粉,结果表明:①施用富硒矿粉能够提高试验作物的含硒量,3种矿粉处理的试验作物含硒量为0.062~5.67 mg/kg,比对照增加0.043~5.629mg/kg;②高含硒量富硒矿粉的效果优于低含硒量的矿粉,但不同的作物反应不同,在试验的范围内,大豆对硒矿粉含量变化的响应值最高,为7.949 3,山药为3.736 8,绿豆为2.645 2,玉米为2.068 6;③不同作物的富硒量不同,大豆平均为1.918 7 mg/kg,山药平均为0.239 3 mg/kg,玉米平均为0.1237 mg/kg,绿豆平均为0.104 3 mg/kg;④不同遗传基础大豆品种的聚硒效果不同,恩施高山绿黄豆的富硒效果优于鄂豆6号。  相似文献   
63.
广东省农科院水稻研究所育成的水稻品种粤香占在9 000 kg/hm2的条件下收获指数达到0.6以上,比普通品种提高约0.1.以粤香占为材料、七丝占(收获指数为0.4)为对照进行水稻收获指数相关性状研究,结果表明:获得高收获指数不是仅靠增加单株产量,而要在增加单株产量的同时适当增加抽穗前植株高度使茎叶重达到一定的程度,同时使始穗期后物质运输主要贡献在穗部,而非茎长增量;收获指数遗传力极低,表现为典型的数量性状特点,各收获指数有关性状间关系十分复杂,茎长增量、始穗株高和成熟株高也许可作为间接影响收获指数的要素.  相似文献   
64.
硒在自然界稀少,分散,它在地壳的丰度为O.08μg/g,在地球内部为13μg/g,在地壳中呈一定的带状分布。从农业生产的角度,可以在植物、动物和微生物等方面进行研究开发。  相似文献   
65.
硒是生物的一种必需微量元素,它与工农业生产及人类健康关系密切。缺硒会使人的免疫功能下降,导致多种疾病,硒过多也会引起中毒。硒在电子、冶金、医药及环保等方面用途广泛,在农作物和畜牧业生产也有重要的作用。  相似文献   
66.
鄂玉4号(原名“八七”单交)是湖北省恩施自治州天地山农科所用自交系“8112”作母本,7913一工作父本育成的高产、优质、抗病的单交种。1995年,经湖北省农作物品种审定委员会审定,定名为鄂玉4号。1996年,全国农业技术推广服务中心定为湖北省高山地区推荐品种。到1996年为止,鄂玉4号已在川东鄂西、湘西三省Ic余县市累计示范推广94.1万亩。一、植物学特性1.植物学特性。株高230cm,穗位高82Cm,主茎18片叶,双穗率用.7%,呈半紧凑型,抗倒性较强。雄穗分枝8~Ic个,颖壳绿色微紫;雌穗花丝谷黄或浅红,果穗长柱形。果穗长16~18cm…  相似文献   
67.
水稻稻瘟病抗性基因研究综述   总被引:4,自引:0,他引:4  
In this paPer,authors gave the review of research progress in rice blast resistance genes.Number of genes conferring rice blast,widely used resistant materials to blast and method of rice blast identification have been summaried in details.The strategies of rice blast resistance breeding are also discussed.  相似文献   
68.
[1]Ahn S.N., Kim Y.K., Han S.S., Choi H.C., Moon H.P. and McCouch S.R., Molecular mapping of a gene for resistance to Korean isolates of rice blast, RGN, 1996,13, 74-76 [2]Bonman J.M., Durable resistance to rice blast disease: environmental influences, Euphytica, 1992, 63, 115-123 [3]Causse M.A., Fulton T.M., Cho Y.G., Ahn S.N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P.C., Harrington S.E., Second G., McCouch S.R., and Tanksley S.D., Saturated molecular map of the rice genome based on an interspecific backcross population, Genetics, 1994, 138, 1251-1274 [4]Donna P., Kiyosawa S., Ando I., and Furutani T., Estimation of functional value of field resistance genes to blast disease in some rice varieties, Breeding Science, 1994, 44, 285-293 [5]Donna P., Ali M.S., Furutani T., and Kiyosawa S., Identification and isolation of blast resistance genes in three indica-type rice varieties, Breeding science, 1996, 46, 107-115 [6]Fukuoka S., and Okuno K., QTL analysis for field resistance to rice blast using RFLP markers, RGN, 1997, 14, 98-99 [7]Goto I., Jaw Y.L., and Baluch A.A., Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, pi-a, pi-k, pi-z and pi-I, Ann. Phytopath. Soc., Japan, 1981, 47(2), 252-254 [8]Hittalmani S., Foolad M.R., Mew T., Rodriguez R.L., and Huang N., Development of a PCR-based marker to identify rice blast resistance gene, Pi-2 (t), in segregating population, Theor. Appl. Genet., 1995, 91, 9-14 [9]Inukai T., Zeigler R.S., Sarkarung S., Bronson M., Dung L.V., Kinoshita T., and Nelson R.J., Development of pre-isogenic lines for rice blast resistance by marker aided selection from a recombinant inbred population, Theor. Appl. Genet., 1996, 93,560-567 [10]Inukai T., Nelson R.J., Zeigler R.S., Sarkarung S., Mackill D.J., Bonman J.M., Takamure I., and Kinoshita T., Allelism of blast resistance genes in near-isogenic lines of rice, Phytopathology, 1994, 84 (11), 1278-1283 [11]Imbe T., Oba S., Yanoria M.J.T., and Tsunematsu H., A new gene for blast resistance in rice cultivar IR24, RGN, 1997, 14, 60-62 [12]Kiyosawa S., Identification of blast resistance genes in some varieties, Japan J. of Breed, 1978, 28(4), 287-296 [13]Ling Z.Z., Wang J.L., Pan Q.H., and Li M.F., Classification for blast resistance of some Japonica type varieties from Yunnan province, Scientia Agricultura Sinica, 1990a, 23(5), 5-11 [14]Ling Z.Z., Pan Q.H., Huang S.Z., and Wang J.L., Rice breeding for resistance to blast, Fujian Publisher of sciences and technology, China Fujian, 1990b, 207-216 [15]Miyamoto M., Ando I., Rybka K., Kodama O., and Kawasaki S., High-resolution mapping of the indica-derived rice blast resistance genes l. Pi-b, MPMI (Molecular plant microbe interaction), 1996, 9(1), 6-13 [16]Mew T.V., Parco A.S., Hittalmani S., Inukai T., Nelson R., Zeigler R.S., and Huang N., Fine-mapping of major genes for blast resistance in rice, RGN, 1994, 11, 126-128 [17]Mago R., Nair S., and Mohan M., Resistance gene analogues from rice: cloning, sequencing and mapping, Theor. Appl. Genet., 1999, 99, 50-57 [18]Mackill D.J., and Bonman J.M., Inheritance of blast resistance in near-isogenic lines of rice, Phytopathology, 1992, 82, 746-749 [19]Naqvi N.L., and Chattoo B.B., Molecular genetic analysis and sequence characterized amplified region assisted selection of blast resistance in rice, In International Rice Genetics III, IRRI, Manila, 1996, 570-572 [20]Naqvi N.I., Bonman J.M., Mackill D.J., Nelson R.J., and Chattoo B.B., Identification of RAPD markers linked to a major gene for blast resistance in rice, Molecular breeding, 1995, 1, 341-348 [21]Pan., Wang., and Tanisaka., A new blast resistance genes identified in the Indian native rice cultivar Aus373 through allelism and linkage tests, Plant Pathology, 1999, 48 (2),288-293 [22]Pan Q.H., Wang L., Tanisaka T., and Ikehashi H., Allelism of rice blast resistance genes in two Chinese rice cultivars, and identification of two new resistance genes, Plant Pathology, 1998a, 47, 165-170 [23]Pan Q.H., Wang L., Ikehashi H., Yamagata H., and Tanisaka T., Identification oftwo new genes conferring resistance to rice blast in the Chinese native “Maowangu“, Plant Breeding, 1998b, 117, 27-31 [24]Pan Q.H., Wang L., Ikehashi H., and Tanisaka T., Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers, Phytopathology, 1996,86 (10), 1071-1075 [25]Rybka K., Miyamoto M., Ando I., Saito A., and Kawasaki S., High resolution mapping of the indica derived rice blast resistance genes II. Pi-ta and Pi-ta and a consideration of their origin, MPMI (Molecular plant microbe interaction), 1997, 10, 517-524 [26]Richter T.E., and Ronald P.C., The evolution of disease resistance genes, Plant Molecular biology, 2000, 42, 195-204 [27]Staskawicz B.J., Ausubel F.M., Kaker B.J., Ellis J.G., and Jones J.D.G., Molecular genetics of plant disease resistance, Science, 1995, 268, 661-667 [28]Tabien R.E., Pinson S.R.M., Marchetti M.A., Li Z., Park W.D., Paterson A.H., and Stansel J.W., Blast resistance genes from Teqing and Lemont, in: G.S Khush (Ed.), Rice Genetics Newsletter III, IRRI, Manila, 1996, 451-452 [29]Wang Z.X., Yano M., Yamanouch U., Iwamoto M., Monna L., Hayasaka H., Katayose Y., and Sasaki T., The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rice repeat class of plant disease resistance genes, The plant Journal, 1999, 19(1), 55-64 [30]Wang G.L., Mackill D.J., Bonman J.M., McCouch S.R., Champoux M.C., and Nelson R.J., RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistance rice cultivar, Genetics, 1994, 136,1421-1434 [31]Yu Z.H., Mackill D.J., Bonman J.M., McCouch S., Guiderdoni E., Notteghem J.L., and Tanksley S.D., Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.), Theor. Appl. Genet., 1996, 93, 859-863 [32]Yu Z.H., Mackill D.J., Bonman J.M., and Tanksley S.D., Tagging genes for blast resistance in rice via linkage to RFLP markers, Theor. Appl. Genet., 1991, 81, 471-476 [33]Zhu L.H. Location of unknown gene of rice blast resistance Using molecular markers, Chinese Science (B), 1994, 24(10), 1048-1052 [34]Zheng K.L., Qian H.R., and Zhuang J.Y., Tagging rice blast resistance genes via DNA Marker, ACTA Phytopathologica SINICA, 1995, 25(4), 307-313  相似文献   
69.
现代农技推广中的农民意愿转变分析   总被引:1,自引:0,他引:1  
农民作为农业生产经营的主体和农业新技术的最终接受者,其思想、态度、行为状况直接影响农技推广目标的最终实现。分析了影响农民意愿转变的因素,并提出各种改变农民意愿的策略与方法。  相似文献   
70.
对6个早稻品种(系)进行了单膜、双膜覆膜方式的旱育秧试验.结果表明.双膜覆盖的生育期、秧苗素质、叶蘖动态、经济性状及产量都明显优于单膜覆盖;不同品种覆盖双膜的效应不同,双膜增穗效应的幅度依次为嘉早312(D3)>品系A(D5)>金优402(D4)>华矮837(DI)>华稻21(D2)>鄂早6号(D6),其结实率增加量依次为金优402(D4)>华矮837(DI)>华稻21(D2)>品系A(D5)、鄂早6号(D6)>嘉早312(D3),产量增加量依次为金优402(D4)>华稻21(D2)>华矮837(D1)>嘉早312(D3)>品系A(D5>鄂早6号(D6).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号