全文获取类型
收费全文 | 69篇 |
免费 | 2篇 |
国内免费 | 7篇 |
专业分类
农学 | 24篇 |
基础科学 | 2篇 |
3篇 | |
综合类 | 40篇 |
农作物 | 7篇 |
畜牧兽医 | 1篇 |
园艺 | 1篇 |
出版年
2023年 | 2篇 |
2022年 | 1篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 2篇 |
2012年 | 3篇 |
2010年 | 4篇 |
2009年 | 13篇 |
2008年 | 2篇 |
2007年 | 5篇 |
2006年 | 4篇 |
2005年 | 9篇 |
2004年 | 7篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1991年 | 2篇 |
1989年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有78条查询结果,搜索用时 0 毫秒
51.
52.
53.
54.
55.
出穗促进率和株高变化是反映水稻品种光温生态响应的重要指标。能否在育种阶段采用相对容易识别的性状来判断水稻品种的生态响应能力,对广适性品种的选育具有重要意义。本文从12个水稻亲本聚合杂交后代选出的36个高代稳定自交系及其亲本共48份材料,在湖北荆州作中稻以及在广州作早稻和晚稻,研究不同生态条件下株高及各组成成分变化与出穗促进率的变化规律。结果表明,第5节间长度是株高成分中最容易受环境影响的部分,其在不同季节的变化与出穗促进率呈现极显著的正相关性,在早稻和中稻、中稻和晚稻、早稻和晚稻3种情况下,第5节间长度变化和出穗促进率之间的相关系数分别为0.37、0.52和0.49,均达到了极显著水平,偏相关系数分别为0.42、0.43和0.36,也都达到了极显著水平。说明第五节间长度容易受光温条件的影响,是生态响应变化的重要指标,越是敏感的材料响应越大,适应性越差。因此,不同环境条件下第五节间长度可用作判断水稻品种对光温条件的响应指标。 相似文献
56.
57.
水稻叶片叶绿素含量与衰老的关系 总被引:1,自引:0,他引:1
为了探明叶绿素含量与叶片衰老的关系,分别利用复合杂交后代的34份和130份材料,研究水稻生育后期自然强光对不同叶绿素含量水稻叶片衰老的影响.结果表明,试材叶片SPAD值在42时,叶绿素含量降解最快.高叶绿素含量材料(叶片SPAD值42以上)在灌浆初期较低叶绿素含量材料(叶片SPAD值42以下)叶绿素降解慢,但随后却高于低叶绿素含量材料的降解.说明在灌浆初期高叶绿素含量材料相对低叶绿素含量材料对强光的耐受性好,随后由于高叶绿素含量材料叶片SPAD值降至42左右,其叶绿素降低速度反而较低叶绿素含量材料快. 相似文献
58.
<正>“乡村振兴”是我国21世纪的重大战略之一,启动乡村振兴战略的根本目的是促进城乡一体化发展,既让农业转型为朝阳产业,也让农民成为有希望的职业,更让农村成为安居乐业的家园。从农业经济角度出发,乡村振兴战略的实施关键是产业振兴,而乡村社会中产业振兴的最优途径是在现有农业生产的基础上进行拓展创新,一方面保留并继承农业种植的基本优势, 相似文献
59.
[1]Ahn S.N., Kim Y.K., Han S.S., Choi H.C., Moon H.P. and McCouch S.R., Molecular mapping of a gene for resistance to Korean isolates of rice blast, RGN, 1996,13, 74-76
[2]Bonman J.M., Durable resistance to rice blast disease: environmental influences, Euphytica, 1992, 63, 115-123
[3]Causse M.A., Fulton T.M., Cho Y.G., Ahn S.N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P.C., Harrington S.E., Second G., McCouch S.R., and Tanksley S.D., Saturated molecular map of the rice genome based on an interspecific backcross population, Genetics, 1994, 138, 1251-1274
[4]Donna P., Kiyosawa S., Ando I., and Furutani T., Estimation of functional value of field resistance genes to blast disease in some rice varieties, Breeding Science, 1994, 44, 285-293
[5]Donna P., Ali M.S., Furutani T., and Kiyosawa S., Identification and isolation of blast resistance genes in three indica-type rice varieties, Breeding science, 1996, 46, 107-115
[6]Fukuoka S., and Okuno K., QTL analysis for field resistance to rice blast using RFLP markers, RGN, 1997, 14, 98-99
[7]Goto I., Jaw Y.L., and Baluch A.A., Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, pi-a, pi-k, pi-z and pi-I, Ann. Phytopath. Soc., Japan, 1981, 47(2), 252-254
[8]Hittalmani S., Foolad M.R., Mew T., Rodriguez R.L., and Huang N., Development of a PCR-based marker to identify rice blast resistance gene, Pi-2 (t), in segregating population, Theor. Appl. Genet., 1995, 91, 9-14
[9]Inukai T., Zeigler R.S., Sarkarung S., Bronson M., Dung L.V., Kinoshita T., and Nelson R.J., Development of pre-isogenic lines for rice blast resistance by marker aided selection from a recombinant inbred population, Theor. Appl. Genet., 1996, 93,560-567
[10]Inukai T., Nelson R.J., Zeigler R.S., Sarkarung S., Mackill D.J., Bonman J.M., Takamure I., and Kinoshita T., Allelism of blast resistance genes in near-isogenic lines of rice, Phytopathology, 1994, 84 (11), 1278-1283
[11]Imbe T., Oba S., Yanoria M.J.T., and Tsunematsu H., A new gene for blast resistance in rice cultivar IR24, RGN, 1997, 14, 60-62
[12]Kiyosawa S., Identification of blast resistance genes in some varieties, Japan J. of Breed, 1978, 28(4), 287-296
[13]Ling Z.Z., Wang J.L., Pan Q.H., and Li M.F., Classification for blast resistance of some Japonica type varieties from Yunnan province, Scientia Agricultura Sinica, 1990a, 23(5), 5-11
[14]Ling Z.Z., Pan Q.H., Huang S.Z., and Wang J.L., Rice breeding for resistance to blast, Fujian Publisher of sciences and technology, China Fujian, 1990b, 207-216
[15]Miyamoto M., Ando I., Rybka K., Kodama O., and Kawasaki S., High-resolution mapping of the indica-derived rice blast resistance genes l. Pi-b, MPMI (Molecular plant microbe interaction), 1996, 9(1), 6-13
[16]Mew T.V., Parco A.S., Hittalmani S., Inukai T., Nelson R., Zeigler R.S., and Huang N., Fine-mapping of major genes for blast resistance in rice, RGN, 1994, 11, 126-128
[17]Mago R., Nair S., and Mohan M., Resistance gene analogues from rice: cloning, sequencing and mapping, Theor. Appl. Genet., 1999, 99, 50-57
[18]Mackill D.J., and Bonman J.M., Inheritance of blast resistance in near-isogenic lines of rice, Phytopathology, 1992, 82, 746-749
[19]Naqvi N.L., and Chattoo B.B., Molecular genetic analysis and sequence characterized amplified region assisted selection of blast resistance in rice, In International Rice Genetics III, IRRI, Manila, 1996, 570-572
[20]Naqvi N.I., Bonman J.M., Mackill D.J., Nelson R.J., and Chattoo B.B., Identification of RAPD markers linked to a major gene for blast resistance in rice, Molecular breeding, 1995, 1, 341-348
[21]Pan., Wang., and Tanisaka., A new blast resistance genes identified in the Indian native rice cultivar Aus373 through allelism and linkage tests, Plant Pathology, 1999, 48 (2),288-293
[22]Pan Q.H., Wang L., Tanisaka T., and Ikehashi H., Allelism of rice blast resistance genes in two Chinese rice cultivars, and identification of two new resistance genes, Plant Pathology, 1998a, 47, 165-170
[23]Pan Q.H., Wang L., Ikehashi H., Yamagata H., and Tanisaka T., Identification oftwo new genes conferring resistance to rice blast in the Chinese native “Maowangu“, Plant Breeding, 1998b, 117, 27-31
[24]Pan Q.H., Wang L., Ikehashi H., and Tanisaka T., Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers, Phytopathology, 1996,86 (10), 1071-1075
[25]Rybka K., Miyamoto M., Ando I., Saito A., and Kawasaki S., High resolution mapping of the indica derived rice blast resistance genes II. Pi-ta and Pi-ta and a consideration of their origin, MPMI (Molecular plant microbe interaction), 1997, 10, 517-524
[26]Richter T.E., and Ronald P.C., The evolution of disease resistance genes, Plant Molecular biology, 2000, 42, 195-204
[27]Staskawicz B.J., Ausubel F.M., Kaker B.J., Ellis J.G., and Jones J.D.G., Molecular genetics of plant disease resistance, Science, 1995, 268, 661-667
[28]Tabien R.E., Pinson S.R.M., Marchetti M.A., Li Z., Park W.D., Paterson A.H., and Stansel J.W., Blast resistance genes from Teqing and Lemont, in: G.S Khush (Ed.), Rice Genetics Newsletter III, IRRI, Manila, 1996, 451-452
[29]Wang Z.X., Yano M., Yamanouch U., Iwamoto M., Monna L., Hayasaka H., Katayose Y., and Sasaki T., The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rice repeat class of plant disease resistance genes, The plant Journal, 1999, 19(1), 55-64
[30]Wang G.L., Mackill D.J., Bonman J.M., McCouch S.R., Champoux M.C., and Nelson R.J., RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistance rice cultivar, Genetics, 1994, 136,1421-1434
[31]Yu Z.H., Mackill D.J., Bonman J.M., McCouch S., Guiderdoni E., Notteghem J.L., and Tanksley S.D., Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.), Theor. Appl. Genet., 1996, 93, 859-863
[32]Yu Z.H., Mackill D.J., Bonman J.M., and Tanksley S.D., Tagging genes for blast resistance in rice via linkage to RFLP markers, Theor. Appl. Genet., 1991, 81, 471-476
[33]Zhu L.H. Location of unknown gene of rice blast resistance Using molecular markers, Chinese Science (B), 1994, 24(10), 1048-1052
[34]Zheng K.L., Qian H.R., and Zhuang J.Y., Tagging rice blast resistance genes via DNA Marker, ACTA Phytopathologica SINICA, 1995, 25(4), 307-313 相似文献
60.
广东省农科院水稻研究所育成的水稻品种粤香占在9 000 kg/hm2的条件下收获指数达到0.6以上,比普通品种提高约0.1.以粤香占为材料、七丝占(收获指数为0.4)为对照进行水稻收获指数相关性状研究,结果表明:获得高收获指数不是仅靠增加单株产量,而要在增加单株产量的同时适当增加抽穗前植株高度使茎叶重达到一定的程度,同时使始穗期后物质运输主要贡献在穗部,而非茎长增量;收获指数遗传力极低,表现为典型的数量性状特点,各收获指数有关性状间关系十分复杂,茎长增量、始穗株高和成熟株高也许可作为间接影响收获指数的要素. 相似文献