首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   2篇
农学   1篇
  10篇
综合类   22篇
农作物   1篇
畜牧兽医   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2011年   3篇
  2010年   13篇
  2009年   4篇
  2008年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
21.
采用田间小区试验,研究了不同赤泥施用量对酸性Cd污染稻田(潮泥田)水稻生长及吸收累积Cd的影响。结果表明,赤泥施用量为4 948 kg·hm-2时水稻产量达到最高,其主要作用是促进了水稻有效穗的形成。同时施用赤泥能显著提高土壤pH,降低土壤有效态Cd含量和减少水稻Cd累积。与不施赤泥的对照相比,施用赤泥3 000 kg·hm-2的处理水稻增产12.4%(P〈0.05),水稻根Cd降低22.0%(P〈0.05),糙米Cd(0.14 mg·kg-1)降低40.8%(P〈0.01),并达到国家粮食卫生标准(GB2715—2005);当赤泥施用量增至9 000 kg·hm-2时,土壤pH提高12.0%(P〈0.01),有效态Cd含量降低24.9%(P〈0.05),水稻根系、茎叶和糙米Cd分别降低55.7%(P〈0.01)、54.5%(P〈0.01)和69.9%(P〈0.01)。表明利用赤泥修复中轻度酸性Cd污染土壤是可行的,并能起到改良土壤和促进水稻增产的效果。试验所用赤泥重金属含量很低,不会造成二次污染。但将赤泥大面积应用于酸性Cd污染稻田还需要系统研究应用参数,并采取农机配套和激励机制来鼓励农民自发行动的积极性。  相似文献   
22.
以潮泥田和红黄泥为供试土壤,利用盆栽试验研究了施用不同类型钙化合物(CaO、CaCO3、CaSO4)对水稻吸收累积Cd、Pb的影响及机理。结果表明,潮泥田施用CaO和CaCO3后,土壤pH值明显升高。当CaO施用量达到0.36gCa·kg-1时土壤有效态Cd含量显著降低,水稻糙米Cd含量也随之显著下降,降幅达26.3%;施用CaCO(30.24gCa·kg-1)和CaSO(40.24gCa·kg-1)后水稻糙米Cd含量降幅分别为23.7%(P0.05)和18.4%(P0.05)。红黄泥施用CaO、CaCO3和CaSO4后,土壤pH值变化趋势与潮泥田相同。当CaO施用量达到0.24gCa·kg-1时土壤有效态Cd含量显著降低,但水稻糙米Cd含量反而上升,当CaO施用量达到0.36gCa·kg-1时,与对照相比水稻糙米Cd含量增加34.5%(P0.05);当CaO施用量增至0.48gCa·kg-1时土壤有效态Pb含量明显增加,水稻糙米Pb含量也随之显著增加,增幅达41.7%。在等钙(0.24gCa·kg-1)条件下,潮泥田及红黄泥施用CaO、CaCO3和CaSO4后因pH变幅较小导致水稻糙米Cd、Pb含量无明显差异。综合分析认为,利用钙化合物控制污染土壤上水稻对Cd、Pb的吸收累积时,需要根据土壤Cd、Pb含量和pH综合考虑合理的钙化合物类型和用量。  相似文献   
23.
氮肥运筹对Y两优1号产量和生物量影响的探讨   总被引:5,自引:1,他引:5  
【研究目的】探讨不同施氮量和不同施氮时期运筹对超级杂交稻籽粒产量及产量构成的影响。【方法】以超级杂交稻Y两优1号为试验材料,设计不同施氮量和不同施氮时期运筹2个田间试验进行研究。【结果】产量(y1)、穗长(y2)、穗总粒数(y3)均与施氮量(x)呈极显著的二次抛物线相关;每公顷穗数与施氮量显著线性相关。超级稻在各生育时期的生物量随施氮量增加而增加;随着水稻生育期的进程施氮量对生物量的促进作用更加明显;相同基-穗施氮比例(80-20)不同施氮量处理各个时期生物量变化趋势相似,后期生物量增加速度快的处理其产量普遍较高。【结论】该地区Y两优1号产量最高的施氮量为252 kg.hm-2;在施氮量为180 kg.hm-2条件下,基-穗施氮比例60-40和基-蘖-穗-粒施氮比例10-50-25-15的产量达到最高,分别为11649 kg.hm-2和11624 kg.hm-2。  相似文献   
24.
采用盆栽试验方法,以外源添加镉模拟土壤镉污染,研究了湖南两种母质发育土壤的稻米镉(Cd)积累差异。结果表明,在0.3~3.0 mg kg~(-1)的土壤Cd范围内,Cd对水稻产量无显著影响。水稻茎叶和糙米Cd含量随着土壤Cd浓度的升高而增加,麻砂泥添加Cd至0.9 mg kg~(-1)时,糙米Cd含量为0.20 mg kg~(-1),达到超标临界值,红黄泥添加Cd至3.0 mg kg~(-1)时,糙米Cd含量(0.19 mg kg~(-1))接近超标临界值。2种母质发育土壤上水稻茎叶对Cd的转运效率与土壤Cd浓度呈负相关,当添加土壤Cd至3.0 mg kg~(-1)时,麻砂泥和红黄泥上水稻茎叶对Cd的转运效率分别降低25.0%(P0.05)和27.2%(P0.05)。土壤Cd浓度影响水稻糙米对Cd的富集能力,随着土壤Cd浓度的升高,水稻糙米对Cd的富集能力下降。回归分析表明,麻砂泥和红黄泥上引起稻米Cd超标的土壤Cd含量临界值分别为1.37 mg kg~(-1)和3.56 mg kg~(-1),说明麻砂泥上的稻米Cd超标风险高于红黄泥,而这种差异主要归咎于2种母质发育土壤的p H、CEC、粒径分布及矿物组成差异。  相似文献   
25.
有机肥与钝化剂及其配施对土壤Cd生物有效性的影响   总被引:2,自引:0,他引:2  
采用Cd污染土壤的大田试验,研究了有机肥与钝化剂及其配施对土壤Cd生物有效性的影响。结果表明,增施有机肥、钝化剂及其配施对水稻皆具有一定增产效果。增施有机肥3000、6000kg/hm。的水稻产量分别比单施化肥增加18.6%和20.9%,并提高了水稻的经济系数;增施有机肥3000、6000kg/hm。的稻米Cd含量分别比单施化肥降低了14.3%和21.4%,而对土壤pH和土壤有效态Cd含量无显著影响,但降低了Cd在稻米中的分配比例;增施钝化剂及其与有机肥3000、6000kg/hm^2配施的水稻稻米Cd含量分别比单施化肥降低28.6%、28.6%、42.9%,茎Cd含量分别下降8.9%、29.7%、43.6%,叶Cd含量分别下降18.8%、25.0%、25.0%,增施钝化剂及其与有机肥配施显著提高了土壤pH,降低了土壤有效态Cd含量,抑制了水稻对Cd的吸收积累,且有机肥与钝化剂配施对钝化剂的钝化效果具有显著的促进作用。  相似文献   
26.
利用实验室模拟沼气装置在恒温条件下研究了稻草产沼气模拟模型和最大产气量的C/N、C/P比例。结果表明,稻草日累计产沼气动态过程符合Peal-Reed模型,而最大累计产沼气量与C/N、C/P比值均符合二次抛物线模型,进一步分析二次模型可得出最大产气量的C/N和C/P比值分别为27.5和163.1,最大产沼气量分别为186.7 L/kg和138.3 L/kg。  相似文献   
27.
为了筛选出高效的螯合肥及其配方,在湖南采用田间小区试验,研究了7种不同配方螯合肥对辣椒生产的影响。结果表明:7号螯合肥增产、增收效果显著,与对照相比,辣椒产量增加689.6 kg/667m~2,增幅达68.2%,农民收入增加2 056.1元/667m~2。  相似文献   
28.
针对南方稻田土壤酸化、重金属Cd环境容量小,采用田间小区试验研究改制黑麦草-桂牧1号轮作模式下不同施肥和酸化调理对牧草质量安全的影响。结果表明,有机肥及其与石灰配施显著增加黑麦草与桂牧1号产量,总鲜重分别达3.19×105,2.74×105 kg/hm2,比单施化肥(对照)分别增产43.10%(P<0.05),22.73%(P<0.05),而石灰、赤泥、稻草等对黑麦草和桂牧1号产量无显著影响;石灰、赤泥、有机肥及有机肥与石灰配施皆能提高土壤pH值,降低土壤有效态Cd含量及其生物有效性;但有机肥、稻草的施用增加了土壤Cd残留。因此,应控制有机肥和稻草的Cd含量与用量,以确保土壤的安全可持续利用;同时,低Cd环境容量土壤施用含Cd有机物料不建议施用石灰等钝化剂,以促进南方牧草种植系统重金属循环减控。  相似文献   
29.
采用田间试验方法,对污染稻田内15个水稻品种的镉、砷吸收累积特征进行了研究。结果表明:15个供试品种的稻米镉含量范围为0.04~0.06 mg/kg,均未超过食品安全国家标准;砷含量范围为0.15~0.28 mg/kg,其中C两优386、晶两优1212、泰优390和深两优475的稻米砷含量超过食品安全国家标准。镉的转运效率以深两优475最高,五优308最低,砷的转运效率以深优9595最高,Y两优9918最低。15个品种稻米镉、砷富集系数均低于1.0,说明该土壤上稻米对镉、砷的富集能力较弱。  相似文献   
30.
长沙“百里水产走廊”水质调查评价及其污染防治对策   总被引:1,自引:1,他引:1  
采用野外调查取样和室内分析的方法,研究了长沙百里水产走廊主要养殖水域部分水质指标的变化状况及其污染分布特征,并采用单因子指数法与内梅罗指数相结合的多因子综合评价法评价了其水环境质量。结果表明,长沙百里水产走廊主要养殖水域夏季(丰水期)水质超标因子是化学需氧量(CODc)r、生化需氧量(BOD5)、总氮(TN)和总磷(TP),最高分别超过国家《地表水环境质量标准》(GB3838-2002)Ⅲ类限值3.4、6.5、3.5和1.9倍,水质内梅罗指数为3.14,属于Ⅳ级重污染;冬季(枯水期)水质状况有所变化,水体溶解氧(DO)下降,氨氮(NH3-N)含量增加,主要超标因子仍为CODcr、BOD5、TN和TP,水质内梅罗指数为1.81,污染相对减轻,属于Ⅱ级轻度污染。不同水源、地理地貌和养殖类型与养殖水环境质量密切相关。养殖水体污染防治以减少内源污染和杜绝外源污染为主,此外可通过其它措施提高水体自净能力,出现富营养化趋势的水体可排入农田消纳,以确保水资源的有效利用和水产养殖的可持续发展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号