首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   76篇
  国内免费   20篇
林业   54篇
农学   460篇
基础科学   13篇
  213篇
综合类   286篇
农作物   45篇
水产渔业   10篇
畜牧兽医   95篇
园艺   9篇
植物保护   27篇
  2024年   12篇
  2023年   39篇
  2022年   61篇
  2021年   29篇
  2020年   19篇
  2019年   11篇
  2018年   18篇
  2017年   13篇
  2016年   16篇
  2015年   14篇
  2014年   63篇
  2013年   69篇
  2012年   59篇
  2011年   63篇
  2010年   51篇
  2009年   55篇
  2008年   90篇
  2007年   104篇
  2006年   104篇
  2005年   63篇
  2004年   40篇
  2003年   34篇
  2002年   41篇
  2001年   46篇
  2000年   29篇
  1999年   22篇
  1998年   14篇
  1997年   5篇
  1996年   7篇
  1995年   9篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1985年   1篇
排序方式: 共有1212条查询结果,搜索用时 15 毫秒
121.
The characteristics of the reflectance spectra of clay minerals and their influences on the reflectance spectra of soils are dealt with in the paper.The results showed that dominant clay minerals in soils could be distinguished in light of the spectral -form parameters of the reflectance spectra of soils,thus making it possible to develop a quick method to determine clay minerals by means of reflectance spectra of soils in the lab.and providing a theoretic basis for remote sensing of clay minerals in soils with a high resolution imaging spectrometer.  相似文献   
122.
Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinate groups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentate corrdination to that of bidentate one with increasing pH of the solution.By influencing types of phosphate ions in solutions,pH affected the chemical forms of P on goethite surfaces,The amount of OH^- displaced by phosphae on goethite surfaces was the most at pH 7.0,the second at pH 9.0,and the least at pH 4.5.  相似文献   
123.
The phosphate in the soil-root interface zone under various soil water contents and application rates of phosphate was still of depletion distribution which could be described by a power function in the form of C/Co= axb(C/Co is the relative content of fertilized phosphate in a distance from the root surface x, a and b are the regression constants). The depletion rate of phosphate in soil near the root surface was higher and the depletion range was narrower under lower soil moisture. On the contrary, at higher soil water content the depletion range was wider, generally. The application rate of phosphate led to the greater depletion intensity of phosphorus was higher in the heavier texture soils. In general, the depletion intensity in the soils, which decreased with increasing clay content or increasing buffering power of soil, decreased in the order as loessal soil and black lou soil > lou soil > yellow cinnamon soil when 50 or 100 mg of phosphorus were applied in the form of KH2PO4. This result indicated that the phosphate distribution and its movement in the soil-root interface zone closely related with the buffering capacity of soil.  相似文献   
124.
The fate of urea-and ammonium bicarbonate(ABC)-nitrogen (N) applied by prevailing traditional techniques to winter wheat (Triticum aestivum L.)or maize (Zea mays L.)grown in the fields of Fluvo-aquic soil was investigated using ^15N tracer-micro-plot technique.Results show that:(1) at maturity of wheat,N recovery in plants and N losses of urea and ABC applied at seeding in autumn were 31-39%,and 34-46%,respextively,while the corresponding figures for side-banding at 10 cm depth in early spring were 51-57%,and 5-12%;surface-broadcast of urea followed by irrigation at early spring was as efficient as the side-banding in improving N recovery in plants and reducing N loss,however,such techuique was found less satisfactory with ABC.(2)At the maturity of maize,N recovery in the plants and N loss of urea and ABC sidebanded at seedling stage or prior to tasseling ranged from 23% to 57%,and 9% to 26%,respectively.(3) Either in Wheat or in maize experiment,the majority of residual fertilizer N in soil profile (0-60cm) was in the form of biologically immobilized organic N,however,the contribution of ammonium fixation by clay minerals increased markedly nwith depth in soil profile.(4) Though the proportion of residual fertilizer N was generally highest in the top 20 cm soil layer,considerable reaidual N (nostly 6-11% of the N applied)was found in 60-100 cm soil layers.  相似文献   
125.
施用碱稳定污泥污水土壤经γ-辐照后土壤溶液中Cu和Zn   总被引:1,自引:0,他引:1  
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminumions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al-OM) to total Al ranged from 7.7% to 69%, and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al-OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al3+. The complexes of aluminum with fluoride (Al-F) were the predominant forms of inorganic Al, and the proportion of Al-F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al3+ was also a major form of inorganic Al, and the proportion of Al3+ to total inorganic Al decreased with increasing pH. The proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrat ions of Al-OM, Al3+, Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminumions were influenced by pH. The concentrations of Al-OM, Al3+, Al-F complexes and Al-OH complexes decreased with the increase in pH.  相似文献   
126.
不同N水平紫色土上不同水稻品种吸收N、K的动力学   总被引:1,自引:0,他引:1  
A pot experiment was conducted to study the effect of nitrogen fertilizer on nitrogen and potassium uptake by four rice cultivars. Results showed that the quadratic parabola relationship between biomass of rice and nitrogen levels was observed, with the maximum biomass at the nitrogen level of 150 mg kg-1. The rates of nitrogen and potassium uptake by the four rice cultivars depended on growth stage and rice cultivar with the maximum rate of N in Shanyou-63 and maximum rate of K in Kaiyou-5 (hybrid rice), respectively. The kinetics of nitrogen and potasssium uptake by rice plant could be quantitatively described by the following equations: y = a + blogt, y = ab + t1/2 and y = ae-bt. The b value in the equations was correlated significantly to the rates of nitrogen and potassium uptake (NR and KR, r = 0.901**~0.990**), suggesting that the b value could be used to distinguish the index of nitrogen and potassium uptake capacity of rice. The maximum values of nitrogen uptake by plant (b value) and apparent recovery of fertilizer nitrogen were observed in Shanyou-63, and the minimum value in Eryou-6078. However, the capacity of potassium uptake (b value) by Kaiyou-5 ranked first and that by Shanyou-63 second. There was a significant linear relationship between nitrogen level and nitrogen uptake by rice, but a quadratic parabola relationship was found between nitrogen level and patassium uptake by rice. The application of nitrogen fertilizer decreased the ratios of potassium to nitrogen uptake by rice plant. The greatest reduction in the ratio was observed at high nitrogen level, and the least reduction was found in Kaiyou-5 and Shanyou-63 due to their greater ability to absorb potassium.  相似文献   
127.
A red soil derived from Quaternary red clay was employed to study nutrient leaching with woil columns repacked in laboratory,The objective was to identify the effects of fertilization practices on leaching patterns and magnitudes of Ca^2 ,Mg^2 ,K^ ,NH4^ ,and NO3^-,The treatments were CK (as a control),CaCO3, CaSO4,MgCO3,Ca(H2PO4)2,urea,KCl,and multiple (a mixture of the above-mentioned fertilizers),The fertilizers were added to the bare surface of the soil columns,and then the columns were leached with 120 mL deionized water daily through peristaltic pumps over a period of 92 days.Leaching processes of NH4^ ,and NO3^- wer e only measured in CK,ured,and multiple treatments which were directly related to N leaching, Results showed that sole application of CaSO4,and Ca(H2PO4)2 scarcely hd any effect on the leching losses of Ca^2 ,Mg^2 ,and K^ ; the application of MgCO3 sthimulated the leaching of Mg^2 ;the application of CaCO3 promoted the leaching of Ca^2 ,Mg^2 and K^ ; urea treatment also promoted the leaching of K^ and NH4^ ,and NO3^- leaching mainly occurred at late stage of leaching process in particular;under KCl treatment,leaching of Ca^2 ,Mg^2 ,and K^ was promoted to a large extent;under multiple treatment, leaching of Ca^2 ,Mg^2 ,K^ ,NH4^ ,and NO3^- was all increased and NO3^- was mainly leached at the end of leaching process and still had a trend of increase.  相似文献   
128.
Evaluation of the stoichiometry of base cations (BCs, including K+, Na+, Ca2+, and Mg2+) and silicon (Si) (BCs:Si) during soil mineral weathering is essential to accurately quantify soil acidification rates. The aim of this study was to explore the differences and influencing factors of BCs:Si values of different soil genetic horizons in a deep soil profile derived from granite with different extents of mineral weathering. Soil type was typic acidi-udic Argosol. Soil samples were collected from Guangzhou, China, which is located in a subtropical region. To ensure that the BCs and Si originated from the mineral weathering process, soil exchangeable BCs were washed with an elution treatment. The BCs:Si values during weathering were obtained through a simulated acid rain leaching experiment using the batch method. Results showed that soil physical, chemical, and mineralogical properties varied from the surface horizon to saprolite in the soil profile. The BCs:Si values of soil genetic horizons during weathering were 0.3-3.7. The BCs:Si value was 1.7 in the surface horizon (A), 1.1-3.7 in the argillic horizon (Bt), and 0.3-0.4 in the cambic (Bw) and transition (BC) horizons, as well as in horizon C (saprolite). The general pattern of BCs:Si values in the different horizons was as follows: Bt > A > Bw, BC, and C. Although BCs:Si values were influenced by weathering intensity, they did not correlate with the chemical index of alteration (CIA). The release amounts of Si and BCs are the joined impact of soil mineral composition and physical and chemical properties. A comprehensive analysis showed that the BCs:Si values of the soil derived from granite in this study were a combined result of the following factors: soil clay, feldspar, kaolinite, organic matter, pH, and CIA. The main controlling factors of BCs:Si in soils of different parent material types require extensive research. The wide variance of BCs:Si values in the deep soil profile indicated that H+ consumed by soil mineral weathering was very dissimilar in the soils with different weathering intensities derived from the same parent material. Therefore, the estimation of the soil acidification rate based on H+ biogeochemistry should consider the specific BCs:Si value.  相似文献   
129.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   
130.
Soil has been identified as a possible carbon(C) sink for sequestering atmospheric carbon dioxide(CO_2).However,soil organic carbon(SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate,soil and agricultural management practices,which hinders our understanding of the underlying mechanisms.The objectives of this study were to use the Agricultural Production Systems sIMulator(APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites,Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Uriimqi with single cropping systems,located in northern China.Firstly,the model was calibrated using information from the sites and literature,and its performance to predict crop growth and SOC dynamics was examined.The calibrated model was then used to assess the impacts of different management practices,including fertilizer application,irrigation,and residue retention,on C dynamics in the top 30 cm of the soil by scenario modelling.Results indicate a significant SOC sequestration potential through improved management practices of nitrogen(N) fertilizer application,stubble retention,and irrigation.Optimal N fertilization(N_(opt)) and 100%stubble retention(R100) increased SOC by about 11.2%,208.29%,and 283.67%under irrigation at Gongzhuling,Zhengzhou,and Xuzhou,respectively.Soil organic carbon decreased rapidly at(U|¨)rumqi under irrigation,which was due to the enhanced decomposition by increased soil moisture.Under rainfed condition,SOC remained at a higher level.The combination of N_(opt) and R100 increased SOC by about 0.46%under rainfed condition at Uriimqi.Generally,agricultural soils with double cropping systems(Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems(Gongzhuling and(U|¨)r(u|¨)mqi).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号