首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   8篇
基础科学   31篇
  8篇
综合类   2篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2014年   9篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有41条查询结果,搜索用时 0 毫秒
21.
基于玉米播深控制的农田地形模拟系统设计与试验   总被引:1,自引:0,他引:1  
开展了玉米播种单体试验台用仿形机构研究,设计了一种可适用于地形上下起伏和地形倾斜的农田地形模拟系统。系统由地形模拟机构、液压系统、电控系统等组成。重点对地形模拟机构进行数学建模,得出了被仿形地形倾斜角与液压缸伸缩的几何关系,并计算确定了地形模拟机构机械尺寸参数。对液压缸进行受力分析,在此基础上对仿形机构的液压系统参数进行了理论计算,确定了液压系统参数,集成电控系统形成了农田地形模拟系统。对农田模拟系统进行了地形模拟试验,在2.0m/s作业速度下高程模拟误差平均值为1.61mm,坡度模拟误差平均值为0.56°。试验结果表明,农田地形模拟系统对地形高程和坡度模拟的快速性和准确性能满足农田地形模拟的要求,为播种播深控制系统试验提供了试验平台。  相似文献   
22.
农药变量施药技术作为精准农业的重要组成部分,可降低生产成本、控制农药对环境的污染,提高经济和生态效益。农药流量测量在整个变量施药控制系统中担任着重要的任务,其准确度和稳定性,是决定变量施药控制系统成败的关键。为此,开发了一套基于时差法的超声波农药流量测量装置,该装置采用了主控制器STM32 F103 R6 T6和高精度时间测量芯片TDC-GP21。通过实验结果和精度分析验证,研制的超声波农药流量计达到1%的测量精度,能够满足农药变量施药控制系统的设计要求,并且为高测量精度和低功耗的超声波流量计提供了一个参考。  相似文献   
23.
为了提高土壤改良剂的利用效率,降低土壤改良成本,设计了针对土壤改良剂的变量作业系统。重点研究开发了外槽轮式土壤改良剂撒施机构的液压驱动与电控系统;构建了控制系统的数学模型,通过数字仿真对控制参数进行了整定;对液压转速控制系统性能进行了测试。结果表明,该系统的实际控制效果可以满足土壤改良剂变量撒施的精度要求。  相似文献   
24.
农业装备自动驾驶技术可以显著提升作业质量,提高作业效率,降低作业成本,减轻劳动强度,已成为智能农业装备发展的重要方向。在政策和市场的共同推动下,我国农业装备自动驾驶技术发展迅速,并通过多场景、多层次的示范和应用推动技术熟化,逐步建立了完整的技术体系。农业装备自动驾驶技术系统主要包括环境感知、工况感知、决策规划、横向控制、纵向控制等关键技术。本文首先阐述了农业装备自动驾驶关键技术研究的现状,分析归纳了各技术领域有待解决的关键科学技术问题;结合农业装备自动导航技术产品和自动驾驶技术集成应用两方面,介绍了国内外农业装备自动驾驶技术研发和应用情况;从自动驾驶技术分级研究和建立标准规范角度,对比分析了农业装备自动驾驶与智能网联汽车行业的差距,指出了农业装备自动驾驶等级划分的迫切需求。为应对智慧农业生产非结构环境、高精度农艺和强农时约束三大挑战,建议突出农业生产应用中作业精准化和驾驶自动化双重需求的特点,有针对性地开展农业装备自动驾驶技术研发、应用示范和技术分级等方面工作。  相似文献   
25.
拖拉机作业时滑转率过高会降低作业效率,准确监滑转率具有重要意义。针对基于最小轮速的滑转率测量方法在转向工况下失效的问题,提出一种基于阿克曼转向原理的滑转率测量方法。通过建立转向时的滑转率测量模型,得到滑转率与理论车速、右前轮车速、右前轮转向角的关系。基于约翰迪尔4720型拖拉机设计滑转率测量系统,包括右前轮轮速测量装置,CAN总线解析模块和滑转率计算模块。水泥路面直行工况下滑转率测量试验结果表明,直行工况滑转率的平均值为3.0%。在水泥路面转向工况下,进行目标理论速度分别为0.5、0.8、1.0、1.2、1.5 m/s的滑转率测量试验。试验结果表明:转向工况滑转率的平均值分别为3.9%、3.4%、3.7%、3.8%、2.9%,处于直行工况的滑转率区间;因此认为此方法可行,为农机田间转向工况滑转率测量提供支撑。  相似文献   
26.
针对车轮转角直接测量法在工程实践中角度传感器安装困难且转轴易断裂的现象,结合车轮转向过程,提出了位移式间接转角测量法和四连杆式间接转角测量法。依据位移式和四连杆式2种间接测量方法原理,分别建立转角测量模型,以雷沃M800型拖拉机为基础,构建自动导航试验平台,通过转角测量试验、沥青路面与农田环境下的导航精度对比试验,分析四连杆式间接测量法、位移式间接测量法和直接测量法3种方法的应用效果。转角测量对比试验结果表明,3种方法的角度值最大误差为0.081°,平均误差分别为0.061°、0.014°和0.017°,小于传感器的测量精度0.088°,3种测量方法测量的测量精度一致。通过沥青路面与农田环境2种地况试验测试,沥青路面上和农田环境下,3种方法的横向偏差平均值的最大值分别为0.235 9、0.364 5、0.498 4 cm,试验表明3种测量方法的导航精度一致。相对于位移式间接转角测量法和直接测量法,在沥青路面上和农田环境下,四连杆式间接测量法导航精度标准差最小,分别为0.890 4和1.297 5 cm。四连杆式间接转角测量法所采用的四连杆式角度传感器安装简便、易于防护,无摩擦损耗,可代替直接转角测量法,应用于实践中。  相似文献   
27.
基于处方图的垄作玉米四要素变量施肥机作业效果评价   总被引:1,自引:0,他引:1  
为了进一步提高肥料利用率,解决黑龙江垦区垄作玉米施肥作业过程中由于颗粒肥密度不同而造成的肥料分层问题,基于沃尔2BJM施肥机,设计了一套适合垄作玉米四要素变量施肥的控制系统。系统集成了亚米级差分GNSS装置,采用电液比例控制技术分别控制4路排肥轴转速。系统根据用户设置的目标施肥量,实时计算液压马达的目标转速,并同步向肥料控制器发送转速指令。控制器通过光电编码器反馈的马达转速信号,调节比例阀开度,一次完成氮肥、磷肥、钾肥和微肥4种单质肥同步变量施用。田间试验结果表明,各路施肥管误差均小于3.00%,变异系数均小于0.05;与传统施肥机同期作业效果对比表明,玉米株高、叶干质量、地上生物量以及SPAD值与传统施肥区并无明显差异,但变量施肥减小了田块中玉米株高、叶干质量、地上生物量以及SPAD的空间差异性。尿素施用量由217kg/hm2减少到了150kg/hm2,减少了30.88%;二胺由232kg/hm2减少到了200kg/hm2,减少了13.79%;钾肥由原来的79kg/hm2增加到了108kg/hm2,增加了36.70%。肥料的投入成本减少了160元/hm2,变量施肥测产数据为12200kg/hm2,产量增加了217kg/hm2,较传统施肥区增产1.78%,收入增加508元/hm2。综合考虑系统误差、玉米生长指标和最终产量数据,基于处方图的垄作玉米四要素变量施肥机满足黑龙江垦区玉米施肥作业实际要求,有效解决了肥料分层问题,显著提高了肥料利用率。  相似文献   
28.
谷物联合收割机测产技术发展现状与展望   总被引:2,自引:0,他引:2  
农业机械化发展是推动我国农业发展的极大动力,为了更好地服务于农业,自动控制和监测技术已广泛应用于现代农业机械装备之上,而谷物智能测产系统作为联合收割机自动监测的一部分,安装在收割机上具有十分重要的意义。为此,主要总结了谷物联合收割机测产系统的国内外技术现状,分析并着重介绍了测产系统核心部分产量计量传感器,进而对我国的联合收割机测产系统有关技术进行了讨论,并以此为基础展望了我国未来智能测产系统的发展。  相似文献   
29.
为了对小麦播种过程中的种管状态进行实时监测,研制了一种基于CAN总线的24行小麦播种监控系统。重点研究了播种监控传感器的设计与信号处理方法、监测模块的设计以及关键技术、显示终端的功能设计以及系统通讯协议设计;并对所研制的小麦播种监控系统进行了功能和性能试验验证,系统误报警率在0.5%以下,能够满足播种作业的要求。试验和应用结果表明,系统能够及时监测到小麦播种过程中排种轴断裂、种箱缺种、种管堵塞、漏播等状况并进行报警,在振动、灰尘等田间作业环境下能够长时间稳定可靠地工作,避免人工监控不全面、随机性强等问题,在小麦播种季节发挥重要作用。  相似文献   
30.
牵引式农机—机具二维三自由度运动学模型研究   总被引:1,自引:0,他引:1  
为解决农机作业过程中牵引式农机机具曲线运动轨迹不一致问题,通过研究牵引类农机—机具曲线运动规律,建立农机—机具二维三自由度运动学模型,实现农机与机具作业点轨迹推算,以达到不改变农机自动导航系统硬件的前提下控制机具作业点按照预定轨迹行进的目的。在直线—转弯、顺时针整圆和S型曲线三种运动模式下,模型的轨迹跟踪试验的结果表明:直线—转弯运动模式下,农机模型的平均误差0.54 cm,机具模型的平均误差0.62 cm;顺时针整圆运动模式下,农机模型的平均误差4.87 cm,机具模型的平均误差4.34 cm;S型曲线运动模式下,农机模型的平均误差11.72 cm,机具模型的平均误差15.96 cm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号