排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
油菜不同生长期稻田土壤无机氮形态及氮肥利用率对控释氮肥施用的响应 总被引:3,自引:1,他引:3
通过盆栽土培试验研究了尿素、控释氮肥对南方稻田冬油菜生长、产量、土壤肥效和氮肥利用效率的影响,为控释氮肥在油菜生产上的推广应用提供参考。试验选用油菜品种湘油15,参考油菜大田种植施氮量,共设4个处理,以不施氮肥(CK)为对照,在施氮量均为200kg/hm^2的水平下,设置了3种氮肥处理:尿素(Urea)、控释氮肥1(CRNF1)和控释氮肥2(CRNF2)。对油菜生物量和产量、不同生育期下土壤无机氮、油菜氮素吸收、油菜生理特性、土壤微生物氮以及土壤酶活性等相关指标进行测定及分析。结果表明:较常规Urea处理相比,控释氮肥处理显著提高了油菜花期、收获期生物量,增产11.2%~20.1%;CRNF1处理显著提高了油菜花期、收获期土壤NO3--N含量,相比尿素处理分别提高43.2%和61.8%,CRNF2处理显著提高了油菜花期、收获期土壤NH4+-N含量,相比尿素处理分别提高18.7%和64.1%,保证了油菜生育后期土壤氮素供应;与Urea处理相比,控释氮肥显著提高了油菜薹期及生殖生长期油菜总氮吸收,最终氮肥利用率(NUE)提高23.1%~60.2%,氮肥农学利用率(NAE)提高19.1%~30.5%;CRNF1处理显著提高了油菜生长后期SPDA值和总叶绿素含量,相比尿素处理分别提高6.5%,10.1%;CRNF1处理极显著提高了油菜生长后期土壤微生物氮,较尿素处理提高142.5%;此外,控释氮肥显著提高了油菜生长后期土壤脲酶、FDA水解酶活性,相比尿素处理分别提高8.4%~12.9%,24.5%~32.4%。在总氮施用量不变的前提下,施用控释氮肥可提高油菜生殖生长期土壤有效氮含量,改善光合作用,增强土壤微生物量和微生物活性,促进氮素的吸收,提高氮肥的利用效率,进而增加油菜干物质累积,最终提高产量。 相似文献
5.
老河口市仙仙果品有限公司地处汉江中游东岸、美丽的梨花湖畔,总部位于城东工业区城东大道24号,业务涵盖果树种植、果品销售、果蔬系列罐头生产、农产品的深加工转化。 相似文献
6.
7.
【目的】比较近缘植物盐芥和拟南芥在高浓度NaCl胁迫下根的生长情况及根中内源赤霉素(GAs)及生长素吲哚乙酸(IAA)的含量变化,为进一步研究盐生植物的耐盐机制提供理论依据。【方法】选取在MS培养基上生长约1周,转接后根长相近的盐芥和拟南芥幼苗进行NaCl胁迫(NaCl浓度拟南芥为0,50,100,150,200,250,300mmol/L,盐芥为0,50,100,150,200,300,500mmol/L),测定高盐胁迫下2种植物根系的生长情况。选取在MS培养基上生长1周,移栽到蛭石/珍珠岩(体积比1∶1)的培养基上继续培养4周的拟南芥和盐芥进行高浓度NaCl胁迫(NaCl浓度为150和300mmol/L),分别于0(对照),1,4,7,10d取根样,采用酶联免疫吸附(ELISA)法测定2种植物根系内源激素GAs及IAA的含量。【结果】正常生长条件下,盐芥根系的生长速度低于拟南芥;高浓度NaCl胁迫下,盐芥与拟南芥根系的生长均受到抑制,但盐芥耐盐能力较强;高浓度NaCl胁迫下,盐芥和拟南芥根系IAA含量均呈现先下降后增加的变化趋势,而GAs含量则呈现不断增加趋势。【结论】盐芥和拟南芥均可通过积累内源IAA和GAs来应对高浓度NaCl胁迫,且盐芥在高浓度NaCl胁迫下IAA和GAs的积累量高于拟南芥。 相似文献
8.
9.
为了优化冬小麦水氮配置,实现养分水分资源高效利用,试验设计3个灌水水平(低灌水W1:25 mm;中灌水W2:40 mm;高灌水W3:55 mm)和5个氮肥水平(N0:0;N1:80 kg/hm^2;N2:180 kg/hm^2;N3:240 kg/hm^2;N4:300 kg/hm^2),共计15个处理,探究了喷灌条件下灌水、施氮及其互作对籽粒灌浆特性及水氮利用效率的影响,并通过建模求解最优水氮配置。结果表明:施氮对te(灌浆持续时间)和tm(最大灌浆速率出现时间)影响显著,两者均随施氮量的增加表现为先增加后降低。N3施氮水平下te和tm最大,均值分别为43.9,24.6天,比N0(不施氮)分别增加1.7,3.0天。W2N3处理的tm值最大,比最小处理W1N0延后5.0天。GFmax(最大灌浆速率)与AG(平均灌浆速率)呈极显著相关(r=0.841**),千粒重与产量(r=0.791**)、te(r=0.755**)和tm(r=0.717**)呈极显著正相关。W2N3组合产量和WUE(水分利用效率)均为最大,分别为8960 kg/hm^2和2.83 kg/m^3。水氮耦合通过优化灌浆过程可有效提高冬小麦产量。喷灌灌水定额26~35 mm、施氮量193~204 kg/hm^2(基施40%+拔节期追施60%)的水氮资源配置模式可实现节水增产双效目标。 相似文献
10.