首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   6篇
林业   59篇
农学   8篇
基础科学   1篇
  48篇
综合类   20篇
农作物   15篇
水产渔业   13篇
畜牧兽医   200篇
园艺   2篇
植物保护   31篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   11篇
  2013年   26篇
  2012年   18篇
  2011年   33篇
  2010年   11篇
  2009年   21篇
  2008年   27篇
  2007年   29篇
  2006年   25篇
  2005年   23篇
  2004年   20篇
  2003年   25篇
  2002年   23篇
  2001年   13篇
  2000年   15篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1966年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
391.
392.
Factors causing variation in fine root biomass in forest ecosystems   总被引:4,自引:0,他引:4  
Fine roots form one of the most significant components contributing to carbon cycling in forest ecosystems. We study here the effect of variation in root diameter classes, sampling depth and the inclusion of understorey vegetation root biomass in fine root biomass (FRB) estimates. The FRB estimates for different forest biomes are updated using a database of 512 forest stands compiled from the literature. We also investigate the relationships between environmental or forest stand variables and fine root biomass (≤2 mm in diameter) at the stand (g m−2) and tree level (g tree−1). The FRB estimates extrapolated for the whole rooting depth were 526 ± 321 g m−2, 775 ± 474 g m−2 and 776 ± 518 g m−2 for boreal, temperate and tropical forests, respectively, and were 26-67% higher than those based on the original sampling depths used. We found significant positive correlations between ≤1 and ≤2 mm diameter roots and between ≤2 and ≤5 mm roots. The FRB estimates, standardized to the ≤2 mm diameter class, were 34-60% higher and 25-29% smaller than those standardized to the ≤1 mm and ≤5 mm diameter classes, respectively. The FRB of the understorey vegetation accounted for 31% of the total FRB in boreal forests and 20% in temperate forests. The results indicate that environmental factors (latitude, mean annual precipitation, elevation, temperature) or forest stand factors (life form, age, basal area, density) can not explain a significant amount of the variation in the total FRB and a maximum of 30% that in the FRB of trees at the stand level, whereas the mean basal area of the forest stand can explain 49% of the total FRB and 79% of the FRB of trees at the tree level.  相似文献   
393.
The effect of climate conditions and strong thinning on the soil organic layer, surface soil, and nitrogen and water utilization by plants was evaluated for hinoki cypress forests in Shikoku and Kinki districts in Japan. Thirty-five forests were selected in Kochi, Ehime, Kagawa and Kyoto prefectures. The mean annual temperate of the studied forests ranged from 9.6 to 16.3°C, and the mean annual precipitation ranged from 1,350 to 3,960 mm. Carbon and nitrogen content in the organic layer decreased with increasing mean annual precipitation. In high precipitation areas, carbon and nitrogen content in the organic layer would be lower due to rapid decomposition with low soil acidity and due to loss of litter because of heavy rainfall. Carbon and nitrogen content in the surface soil at 0–5 cm depth decreased with increasing mean annual temperature, but was not related to mean annual precipitation. The results indicate that loss of organic layer by raindrops in a high precipitation area causes lower nitrogen availability for plants. Strong thinning significantly reduced carbon and nitrogen content in the organic layer but did not affect nitrogen concentration and δ13C in leaves. These results suggest that climate conditions and strong thinning can affect carbon and nitrogen content in the organic layer and subsequent nitrogen availability in soil, but strong thinning does not appreciably affect nitrogen and water utilization by hinoki cypress.  相似文献   
394.
Five Japanese timbers, four timbers from the USA, and one Malaysian timber were evaluated for their resistance to the invasive dry-wood termite Incisitermes minor (Hagen) using laboratory choice and no-choice feeding tests with holed specimens. The highest survival rates of I. minor in both the heartwood and sapwood no-choice feeding tests were more than 70% after 3 months. When offered sapwood and heartwood choice feeding tests and the combined choice feeding tests, the highest survival rates of I. minor were more than 75% after 3 months. With regards to the percentage of wood mass losses in the no-choice and choice feeding tests, karamatsu (Larix leptolepsis), buna (Fagus crenata), and Douglas fir (Pseudotsuga menziesii) were classified as “resistant” species among the ten sapwood specimens. In the heartwood no-choice and choice feeding tests, the resistant species were buna, karamatsu, Douglas fir, sugi (Cryptomeria japonica), akamatsu (Pinus densiflora), and western red cedar (Thuja plicata). The ranking of the resistance of the ten commercial timbers against I. minor was buna > karamatsu > sugi > western red cedar > Douglas fir > rubber > western hemlock > hinoki > spruce.  相似文献   
395.
396.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.  相似文献   
397.
Effects of crop rotation between rice paddy fields and strawberry nurseries on the control of Verticillium wilt of strawberry were studied. For detecting Verticillium dahliae, the causal agent of Verticillium wilt, in soil, eggplant was used as an indicator plant. We were thus able to detect as low as 1 microsclerotium/g dry soil. In field surveys of Chiba and Hokkaido from 2000 to 2003, V. dahliae was detected in 9 of 10 upland fields but in none of 21 paddy-upland fields. In Hokkaido during 2000–2007, strawberry mother plants were planted, and plantlets were produced in upland and paddy-upland fields to assess V. dahliae infestation. Verticillium wilt of strawberry had never occurred in 72 tested paddy-upland fields, compared to 13.2–73.9% of plantlets infected with V. dahliae in upland fields. In a pot experiment in a greenhouse, two flooding treatments or two paddy rice cultivations suppressed Verticillium wilt symptoms on eggplant. In field experiments, one paddy rice cultivation in Chiba and two in Hokkaido prevented development of Verticillium wilt symptoms on eggplant. Verticillium wilt of strawberry was controlled completely with one paddy rice cultivation in infested fields in Chiba. In these field experiments, the number of microsclerotia of V. dahliae decreased under the flooding conditions for paddy rice cultivation. Based on the reduction in microsclerotia, a crop rotation system with paddy rice for 3 years (three times), green manure for 1 year, and strawberry nursery for 1 year was designed for Hokkaido.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号