首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   2篇
林业   2篇
  23篇
综合类   3篇
农作物   2篇
水产渔业   3篇
畜牧兽医   1篇
园艺   6篇
植物保护   17篇
  2020年   1篇
  2018年   3篇
  2016年   3篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   5篇
  1999年   3篇
  1997年   1篇
  1995年   3篇
  1991年   1篇
  1990年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
51.
52.
Dry matter production and accumulation of assimilates in cereal grain The grain yield of a cereal crop is the product of the morphological yield components grain number and grain size and these are in turn the result of the interaction of three main physiological factors, i.e. 1) magnitude of assimilate production (source), 2) storage capacity of  相似文献   
53.
Microbial biomass and activity as well as N-availability were measured in the mounds of three ant species strongly differing in foraging strategy and mound architecture: Myrmica scabrinodis, Lasius niger and L. flavus. Soil microbial biomass (Cmic) was significantly increased in the mounds of all three ant species. This positive effect was due to the accumulation of organic matter (Corg) within the mounds. Microbial activity was increased in M. scabrinodis mounds only. Available Nmin was accumulated in all mound types, independent of the feeding mode of the ants, with Lasius mounds having significantly higher Nmin content than M. scabrinodis mounds. It is hypothesised that the differences between the mound types are due to differences in nest architecture, especially the integration of grassy vegetation. Higher microbial activity in M. scabrinodis mounds may be a consequence of supplementary energy provided by root exudates. The amount of Nmin in M. scabrinodis mounds may be reduced by increased plant uptake and by immobilisation within the microbial biomass.  相似文献   
54.
55.
The role of edaphic factors in driving the relationship between plant community structure and ecosystem processes is a key issue of the current debate on functional implications of biodiversity. In this study, we draw a direct link between aboveground/belowground relationships, vegetation structure, and aboveground management. We used ground nesting ants and arbuscular mycorrhizal fungi (AMF) as an example for quantifying the role of biotic interactions in soil. Although both groups are known to have a major impact on grasslands, the interactive effect of these taxa on vegetation structure and its sensitivity to grassland management is poorly understood. We show that the ant Lasius flavus increases the root arbuscular mycorrhizal colonization (AMC) of grasses by modifying biotic and abiotic soil properties. As a possible consequence, the shoot length of grass growing on ant mounds was shorter and shoot N and P concentrations were higher than in grass growing off of the mounds. In addition, management affected ant nest architecture and soil and, in turn, AMC. These results emphasize the need to consider the interactions between plants, soil microorganisms, soil fauna, and aboveground management to increase the understanding of the drivers of biodiversity and ecosystem functioning in grasslands both aboveground and belowground.  相似文献   
56.
Wheat insect pests and the beneficial arthropod populations were assessed using sweep net across a large scale winter wheat field in Bad Lausick (Free State of Saxony, Germany) before and after insecticide applications. The insecticides used were Karate (pyrethroid), Biscaya (neonicotinoid) and NeemAzal T/S (botanical insecticide). The tested compounds were sprayed twice during the early season growth stage (Elongation- GS 32) and at the heading stage (GS 55), and their effects were evaluated on wheat insect pests. The side effects of these insecticides on associated natural enemies were also studied. Monitoring was conducted for 4 weeks after each treatment. Cereal aphids, thrips, leafhoppers, cereal leaf beetles, cereal bugs and also many natural enemies such as predators (lady beetles, lacewings, syrphids, dance flies and spiders) and parasitoids (parasitic wasps) were surveyed. The dose of these insecticides resulted in reductions of wheat insect and natural enemy populations and this reduction was corrected based on Abbott equation. The results showed that Karate is correlated with the highest percentage reduction (79.5 %) to wheat insect pests. Karate use also resulted in a percentage reduction to natural enemies (30–60 %). Biscaya and NeemAzal T/S is correlated with an equivalent mortality percents (50–65 %) to wheat insect pests and resulted in a smaller percentage reduction of natural enemies (10–40 %) compared to Karate. Thrips and cereal bugs were more affected than leafhoppers. Lacewings and dance flies were more susceptible; while spider, syrphids and parasitoid wasps were more tolerant. Compatibility between natural insecticides and natural enemies is highly required to keep the environment clean.  相似文献   
57.
Field trials were conducted in spring wheat to observe effects of jasmonic acid (JA) on aphids, thrips and wheat blossom midge (WBM). Two spring wheat varieties (Triso and Kadrilj) were sprayed twice, with two concentrations of JA plus control. Wheat pests and associated natural enemies (Coccinellidae, Empididae and Aphelinidae) were surveyed by direct count and sweep net methods. Thrips larvae and adults and WBM larvae were estimated by dissecting wheat ears. Wheat midge larvae were monitored using white traps in treated and untreated plots. At the end of season, wheat yield was assessed in treated and control plots. There was a significant difference in the number of insect pests and their natural enemies between treatments in both varieties. Plants in control plots had higher numbers of aphids, thrips and midges than in treated plots. There were more aphids, thrips and midges on the variety ??Triso?? than on ??Kadrilj??. JA application enhanced wheat yield in treated plots compared to control plots. The results indicated that JA mediated induction of plant defense in wheat plants can improve resistance against insect herbivores. JA could be used to develop environmentally sound crop management with reduced insecticide applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号