首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3757篇
  免费   169篇
  国内免费   3篇
林业   283篇
农学   522篇
基础科学   92篇
  940篇
综合类   123篇
农作物   311篇
水产渔业   113篇
畜牧兽医   1093篇
园艺   125篇
植物保护   327篇
  2023年   23篇
  2022年   51篇
  2021年   61篇
  2020年   102篇
  2019年   96篇
  2018年   146篇
  2017年   155篇
  2016年   124篇
  2015年   101篇
  2014年   114篇
  2013年   338篇
  2012年   165篇
  2011年   193篇
  2010年   148篇
  2009年   137篇
  2008年   143篇
  2007年   156篇
  2006年   156篇
  2005年   116篇
  2004年   83篇
  2003年   86篇
  2002年   79篇
  2001年   62篇
  2000年   54篇
  1999年   56篇
  1998年   45篇
  1997年   45篇
  1996年   36篇
  1995年   38篇
  1994年   30篇
  1993年   31篇
  1992年   33篇
  1991年   37篇
  1990年   36篇
  1989年   41篇
  1988年   47篇
  1987年   38篇
  1986年   30篇
  1985年   28篇
  1984年   27篇
  1983年   32篇
  1982年   24篇
  1981年   23篇
  1980年   36篇
  1979年   46篇
  1978年   23篇
  1970年   40篇
  1969年   27篇
  1968年   28篇
  1967年   25篇
排序方式: 共有3929条查询结果,搜索用时 46 毫秒
51.
Present investigation evaluates the effect of organic fertilization (OF), integrated nutrient management (INM) practice, and recommended dose of chemical fertilization (CF) on changes in soil organic phosphorus (P) and its fractions under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. The 4-year experiment (2009–2013), under split-plot design, showed that OF did not increase the total P or total organic P content of soil under either of the test crops. However, OF maintained the higher level of labile organic P and moderately labile organic P in soil under wheat the moderately stable organic P and highly stable organic P was highest in paddy soil under CF practices (11.34 and 7.77 μg g?1, respectively) followed by wheat. The P concentration in organically grown rice or wheat grain was increased significantly compared with their CF counterparts. The productivity economics for rice and wheat crops showed INM fertilization to be more economical than OF.  相似文献   
52.
Estimation of sediment load from Himalayan basins is of considerable importance for the planning, designing, installation and operation of hydro-power projects, including management of reservoirs. In the present study, an assessment of physical and chemical load, sediment yield and erosion rate has been undertaken at eight different locations in the Sainj and Tirthan watersheds. The analysis revealed that the maximum load was transferred during the monsoon season. Moreover, the estimated average chemical erosion rate of the Sainj (83 t km− 2 yr− 1) and Tirthan (80 t km− 2 yr− 1) watersheds were higher than that of the Indian average (69 t km− 2 yr− 1) representing all the rivers. Both watersheds were eroding physically and chemically at a faster rate than that of the world global average erosion rate (185 t km− 2 yr− 1). The flattish nature of the channels in some segments of these watersheds showed a lower transport of sediments, where as the constricted segments having steep bed slopes increased the velocity of flow and the sediment transport rate. These findings have important implications for water resource management in the context of sediments mobilization, erosion, channel management, ecological functions and operation of the hydro-power projects in the Lesser Himalayan region.  相似文献   
53.
Grain legumes, the important constituents of sustainability‐based cropping systems and energy‐limited vegetarian diets have long been the subject of scientific research. Tremendous technological strides were made in the so‐called orphan crops, in terms of both varietal improvement and generation of basic information. Despite recalcitrancy and high genotype dependency, in vitro culture techniques such as organogenesis, in vitro mutagenesis, embryo rescue and in vitro gene transfer have been deployed for improvement of several grain legumes and these played an important role in introgression of desirable genes from related and distant species and creation of additional genetic variability. Stable and reproducible regeneration protocols resulted in the development of genetically modified chickpea, pigeon pea, cowpea, mungbean, etc., while embryo rescue was deployed successfully for recovery of interspecific recombinants, a few of them exploited for the development of commercial cultivars. Nevertheless, doubled haploidy witnessed limited success and protoplast regeneration and in vitro mutagenesis remained of academic interest. The present review focuses on the progress, achievements, constraints and perspectives of using in vitro technology in grain legume improvement.  相似文献   
54.
At present, testing for distinctness, uniformity and stability (DUS) of crop varieties relies on a set of morphological characters. These characters suffer fromthe limitations of number, interaction with the environment in which the variety grows and subjectivity in decision-making. The potential of DNA-based markers such as sequence tagged microsatellite site (STMS), for establishing DUS merits investigation. In the present study, a set of 55 mapped STMS markers, selected from 12 linkage groups of rice genome, was used to examine distinctness of 23 aromatic rice genotypes including the commercially important Basmati varieties. Forty-one of these markers (74.5%) showed polymorphism between the varieties. The number of alleles per locus ranged from 2–4 with an average of 2.3. The polymorphism information content (PIC) of the markers varied from 0.083 to 0.665 with an average of 0.338. All the varieties could be differentiated from each other at a low probability (0.07×10-13) of identical match by chance. The marker-based clustering of the varieties corresponded with the known phenotypic classification, thereby providing confidence in the distinctness established by the mapped STMS markers. The utility of these markers to study uniformity and stability was analysed using a commercially important crossbred Basmati rice variety Pusa Basmati 1(IET-10364) that contributes about 40–50% of Basmati rice export from India. Genotyping of twenty individual plants, grown from the nucleus, breeder, foundation, certified and farmer's saved seed samples using all the 55 markers revealed no variation among the plants. These observations suggested that the set of mapped markers employed in this study could be further used for establishing distinctness of aromatic rice varieties and for studying DUS of the important commercial variety Pusa Basmati 1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
55.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   
56.
True-to-type clonal fidelity is one of the most important pre-requisites in micropropagation of crop species. Genetic fidelity of in vitro raised 45 plants of gerbera (Gerbera jamesonii Bolus) derived from three different explants, viz., capitulum, leaf and shoot tips, was assessed by 32 ISSR markers, for their genetic stability. Out of 32 ISSR markers, 15 markers produced clear, distinct and scorable bands with an average of 5.47 bands per marker. The markers designed from AG motif amplified more number of bands. The markers anchored at 3′ ends produced high number of consistent bands than unanchored markers. Fifteen ISSR markers generated a total of 3773 bands, out of which 3770 were monomorphic among all the clones. The Jaccard's similarity coefficient revealed that out of 45 clones derived from different explants, 44 were grouped into a single large cluster alongwith the mother plant with a similarity coefficient value of 1.00, whereas one clone (C38) remained ungrouped. The clones derived from capitulum and shoot tip explants did not show any genetic variation, whereas, one of the leaf-derived clones exhibited some degree of variation.  相似文献   
57.
In the present study, water and nitrogen interaction on soil profile water extraction and evapo-transpiration (ET) was investigated taking a field experiment on a clay loam soil (Typic Haplustept) at the Indian Agricultural Research Institute, New Delhi with four consecutive crops (maize-wheat-maize-wheat) taken from July 2002 to April 2004. Three levels of water regime, namely W1, W2 and W3 referring to limited, medium and maximum irrigation were applied to each crop depending on the seasonal rainfall and the critical crop growth stage. The three water regimes were used with five nitrogen levels from T1 to T5, (T1, 0% N; T2, 75% N; T3, 100% N; T4, 150% N; T5, 100% N from organic source) in a split plot design for the four crops grown in sequence.Significant water and nitrogen interaction was observed for ET and soil profile water extraction pattern. Averaged across nitrogen treatments, ET in W2 and W3 were higher by 17 and 26%, respectively than W1 in maize 2002 and by 12 and 19% in maize 2003. In case of wheat, ET in W2 and W3 were higher by 27 and 58% than W1 in 1st crop and by 37 and 70% in 2nd crop. The effect of nitrogen regime, however, was prominent in both crops of maize and wheat, with significantly higher profile soil moisture depletion in T4 of each water regime. In all cases, lowest water depletion was observed in control plots receiving 0% N.In both crops, water extraction from surface 60 cm was highest in W3 followed by W2 and W1. In maize, the % extraction from 0 to 60 cm layer varied from 71 to 76% (W1), 70-79% (W2) and 75-82% (W3), whereas the values for wheat were 70-77, 72-79 and 75-83% for W1, W2 and W3, respectively. The 90-120 cm layer contributed only 3-14% to total water extraction in both the crops. From 90 to 120 cm layer, higher extraction was observed in W1 as compared to W3. The extraction values in W1, W2 and W3 in maize were 9-13, 7-14 and 3-9, respectively, whereas the corresponding values in wheat were 8-14, 5-12 and 3-7% for the three water regimes. Effect of nitrogen treatments on water extraction from deeper layer was observed with higher extraction in highest fertilized treatment (T4) as compared to other treatments.  相似文献   
58.
Individual effect of different field scale management interventions for water saving in rice viz. changing date of transplanting, cultivar and irrigation schedule on yield, water saving and water productivity is well documented in the literature. However, little is known about their integrated effect. To study that, field experimentation and modeling approach was used. Field experiments were conducted for 2 years (2006 and 2007) at Punjab Agricultural University Farm, Ludhiana on a deep alluvial loamy sand Typic Ustipsamment soils developed under hyper-thermic regime. Treatments included three dates of transplanting (25 May, 10 June and 25 June), two cultivars (PR 118 inbred and RH 257 hybrid) and two irrigation schedules (2-days drainage period and at soil water suction of 16 kPa). The model used was CropSyst, which has already been calibrated for growth (periodic biomass and LAI) of rice and soil water content in two independent experiments. The main findings of the field and simulation studies conducted are compared to any individual, integrated management of transplanting date, cultivar and irrigation, sustained yield (6.3-7.5 t ha−1) and saved substantial amount of water in rice. For example, with two management interventions, i.e. shifting of transplanting date to lower evaporative demand (from 5 May to 25 June) concomitant with growing of short duration hybrid variety (90 days from transplanting to harvest), the total real water saving (wet saving) through reduction in evapotranspiration (ET) was 140 mm, which was almost double than managing the single, i.e. 66 mm by shifting transplanting or 71 mm by growing short duration hybrid variety. Shifting the transplanting date saved water through reduction in soil water evaporation component while growing of short duration variety through reduction in both evaporation and transpiration components of water balance. Managing irrigation water schedule based on soil water suction of 16 kPa at 15-20 cm soil depth, compared to 2-day drainage, did not save water in real (wet saving), however, it resulted into apparent water saving (dry saving). The real crop water productivity (marketable yield/ET) was more by 17% in 25th June transplanted rice than 25th May, 23% in short duration variety than long and 2% in irrigation treatment of 16 kPa soil water suction than 2-days drainage. The corresponding values for the apparent crop water productivity (marketable yield/irrigation water applied) were 16, 20 and 50%, respectively. Pooled experimental data of 2 years showed that with managing irrigation scheduling based on soil water suction of 16 kPa at 15-20 cm soil depth, though 700 mm irrigation water was saved but the associated yield was reduced by 277 kg ha−1.  相似文献   
59.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   
60.
Chitosan has been widely accepted as a wall material for preparing microcapsules of various purposes in human medicine. The possibility of using chitosan as a wall material for microencapsulating nutrients and drugs for aquaculture purposes, specifically to Macrobrachium rosenbergii larvae was evaluated in this study. Two types of chitosan-coated microcapsules were prepared using either acetone (MEC-A) or NaOH (MEC-N) as the cross-linking agents. They were compared with a microbound diet relative to total leaching of nutrients and free amino acids (FAA). Among the microcapsules, MEC-N showed the lowest level of total leaching of nutrients (23.3%) during 5 h of immersion in seawater and released 65% FAA after 60 min. During laboratory trials, 75% larvae had accepted the MEC-N capsule. The results of the study suggest that chitosan can be used as a wall material for preparing microcapsules to deliver drugs and nutrients to M. rosenbergii larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号