首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12713篇
  免费   3601篇
  国内免费   10篇
林业   698篇
农学   646篇
基础科学   58篇
  2705篇
综合类   858篇
农作物   373篇
水产渔业   2926篇
畜牧兽医   6158篇
园艺   190篇
植物保护   1712篇
  2023年   33篇
  2022年   60篇
  2021年   229篇
  2020年   575篇
  2019年   1153篇
  2018年   999篇
  2017年   1065篇
  2016年   1066篇
  2015年   918篇
  2014年   959篇
  2013年   1285篇
  2012年   796篇
  2011年   886篇
  2010年   855篇
  2009年   463篇
  2008年   603篇
  2007年   441篇
  2006年   487篇
  2005年   466篇
  2004年   426篇
  2003年   410篇
  2002年   433篇
  2001年   168篇
  2000年   195篇
  1999年   120篇
  1998年   78篇
  1997年   71篇
  1996年   60篇
  1995年   57篇
  1994年   39篇
  1993年   60篇
  1992年   56篇
  1991年   44篇
  1990年   53篇
  1989年   61篇
  1988年   49篇
  1987年   32篇
  1986年   27篇
  1985年   47篇
  1984年   28篇
  1983年   44篇
  1982年   30篇
  1981年   23篇
  1980年   27篇
  1979年   22篇
  1978年   33篇
  1977年   29篇
  1974年   24篇
  1973年   28篇
  1970年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Since the discovery of penicillin in 1928 and throughout the ‘age of antibiotics’ from the 1940s until the 1980s, the detection of novel antibiotics was restricted by lack of knowledge about the distribution and ecology of antibiotic producers in nature. The discovery that a phenazine compound produced by Pseudomonas bacteria could suppress soilborne plant pathogens, and its recovery from rhizosphere soil in 1990, provided the first incontrovertible evidence that natural metabolites could control plant pathogens in the environment and opened a new era in biological control by root‐associated rhizobacteria. More recently, the advent of genomics, the availability of highly sensitive bioanalytical instrumentation, and the discovery of protective endophytes have accelerated progress toward overcoming many of the impediments that until now have limited the exploitation of beneficial plant‐associated microbes to enhance agricultural sustainability. Here, we present key developments that have established the importance of these microbes in the control of pathogens, discuss concepts resulting from the exploration of classical model systems, and highlight advances emerging from ongoing investigations. © 2019 Society of Chemical Industry  相似文献   
72.
This study aimed to identify the potential allelopathic indigenous rice (Oryza sativa L. ssp. indica) varieties from Bangladesh using a performance study in a weed‐infested field and to assess the extent of allelopathic interference relative to resource competition in a glasshouse experiment. Six varieties – namely, “Boterswar,” “Goria,” “Biron” and “Kartiksail” as the most allelopathic, “Hashikolmi” as weakly allelopathic and “Holoi” as nonallelopathic – were raised following a nonweed control method. The infestation levels of weed species were calculated using Simpson's Diversity Index (SDI), which ranged from 0.2 to 0.56. However, a significant correlation coefficient (0.87, P < 0.001) was obtained from these field data compared with the root inhibition percentage from the laboratory bioassay, and the “Boterswar” variety was the most allelopathic. The interactions between the allelopathic variety “Boterswar,” weakly allelopathic variety “Hashikolmi” and Echinochloa oryzicola via a target (rice)‐adjacent (E. oryzicola) cogrowth culture were determined in a hydroponic arrangement. The relative competitive intensity (RCI) and the relative neighbor effect (RNE) values showed that the crop–weed interaction was facilitation for “Boterswar” and competition for “Hashikolmi” and E. oryzicola in rice/E. oryzicola cogrowth cultures. The allelopathic effects of “Boterswar” were much higher than the resource competition in rice/E. oryzicola cogrowth cultures. The converse was observed for “Hashikolmi.” Moreover, the mineral content of E. oryzicola was severely affected by “Boterswar”/E. oryzicola cogrowth cultures’ exudate solution. Therefore, the allelopathic potential of “Boterswar” variety might be useful for developing the weed‐suppressing capacity of rice, which will likely have a significant influence on paddy weed control.  相似文献   
73.
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non‐controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site‐targeted distribution of agrochemicals, a carrier‐mediated propesticide strategy is proposed in this review. After conjugating a non‐systemic agrochemical with a nutrient (α‐amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient‐specific carriers. By applying this strategy, non‐systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry  相似文献   
74.
CRISPR-Cas technology has raised considerable interest among plant scientists, both in basic science and in plant breeding. Presently, the generation of random mutations at a predetermined site of the genome is well mastered, just like the targeted insertion of transgenes, although both remain restricted to species or genotypes amenable for plant transformation. On the other hand, true genome editing, i.e. the deliberate replacement of one or several nucleotides of the genome in a predetermined fashion, is limited to some rather particular examples that generally concern genes allowing positive selection, for example tolerance to herbicides. Therefore, further technological developments are necessary to fully exploit the potential of genome editing in enlarging the gene pool beyond the natural variability available in a given species. In principle, the technology can be applied to any quality related, agronomical or ecological trait, under the condition of upstream knowledge on the genes to be targeted and the precise modifications necessary to improve alleles. Published proof of concepts concern a wide range of agronomical traits, the most frequent being disease resistance, herbicide tolerance and the biochemical composition of harvested products. The regulatory status of the plants obtained by CRISPR-Cas technology raises numerous questions, in particular with regard to the plants that carry in their genomes the punctual modifications caused by the presence of the Cas9 nuclease but not the nuclease itself. Without clarification by the competent authorities, CRISPR-Cas technology would continue to be a powerful tool in functional genomics, but its potential in plant breeding would remain untapped.  相似文献   
75.
76.
Oxygen diffusion rate (ODR) and redox potential (EH) are quantitative indices representing oxygen availability and redox status in soils, which is valuable information for better understanding causes and effects of soil aeration. Because these indices are spatially and temporally highly variable, continuous measurements and adequate numbers of repetitions are essential for accurate in situ monitoring. Here, we present a new, fully automated recording system for in situ measurements where ODR and EH are measured at the same platinum electrode. The conflict between electrode polarization for ODR and the resulting biased EH readings is solved by reducing the polarization time and introducing a recovery interval between two consecutive measurement cycles. The shorter polarization time ensures accurate EH readings. It also results in moderately overestimated ODR readings, but this can be corrected before data analysis. The recovery interval restricts temporal resolution of the EH‐ODR data pairs to 8 h. We illustrate the use of the system with measurements in a field experiment in Zürich, Switzerland. ODR curves at different depths ran roughly parallel to the corresponding curves of O2 concentration in soil air but ODR was much more sensitive to precipitation. Low ODR was a necessary but not a sufficient condition for declining EH. EH ran parallel to O2 concentration in soil air rather than to ODR. The fully automated system allows for time series of replicate measurements in multifactorial field studies with reasonable labor requirements. It may be particularly suitable for studies examining the effects of soil tillage, compaction, and irrigation, where structure‐related soil properties such as porosity, gas permeability, and soil aeration play a dominant role.  相似文献   
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号