首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   10篇
林业   2篇
农学   1篇
  5篇
综合类   5篇
农作物   1篇
水产渔业   1篇
畜牧兽医   69篇
植物保护   14篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2013年   9篇
  2012年   9篇
  2011年   13篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1965年   1篇
  1942年   1篇
  1927年   1篇
  1926年   1篇
  1922年   1篇
  1921年   2篇
  1920年   1篇
  1918年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
11.
12.
The objective of the present experiment was to investigate the effects of transportation, lairage, and preslaughter stressor treatment on glycolytic potential and pork quality of the glycolytic longissimus and the oxidative supraspinatus (SSP) or serratus ventralis (SV) muscles. In a 2 x 2 x 2 factorial design, 384 pigs were assigned randomly either to short (50 min) and smooth or long (3 h) and rough transport, long (3 h) or short (< 45 min) lairage, and minimal or high preslaughter stress. Muscle samples were taken from the LM at 135 min and from the SSP at 160 min postmortem for determination of the glycolytic potential and rate of glycolysis. At 23 h postmortem, pork quality was assessed in the LM and the SV. Effects of transport and lairage conditions were similar in both muscle types. Long transport increased (P < 0.01) the glycolytic potential and muscle lactate concentrations compared with short transport. Both long transportation and short lairage decreased (P < 0.01) redness (a* values) and yellowness (b* values) of the LM and SV. In combination with short lairage, long transport decreased (P < 0.05) pork lightness (lower L* values), and electrical conductivity was increased (P < 0.05) after long transport. Several interactions between stress level and muscle type (P < 0.001) were observed. High preslaughter stress decreased (P < 0.001) muscle glycogen in both the LM and SSP, but this decrease was greater in the LM. Lactate concentrations were increased (P < 0.001) only in the LM by high preslaughter stress. Increases in ultimate pH (P < 0.001) and decreases in a* values (P < 0.01) were greatest in the SV, whereas increases in electrical conductivity (P < 0.001) were greatest in the LM. The lack of interactions among transportation, lairage, and muscle type was attributed to the relatively minor differences in stress among treatments. It was concluded that, in glycolytic muscle types such as the LM, the high physical and psychological stress levels associated with stress in the immediate preslaughter period have a greater effect on the water-holding capacity of the meat and may promote PSE development. Conversely, oxidative muscle types tend to have higher ultimate pH values and produce DFD pork in response to intense physical activity and/or high psychological stress levels preslaughter.  相似文献   
13.
14.
15.

Now that group housing is replacing individual crates, so that calves can lie, stand and walk on the pen floor, the quality of the floor for group-housed calves has become the focus of attention. The reaction of two groups of four calves to a double area of floor made from two materials (wooden slats and synthetic slats with a rubber coating) was examined round the clock for 5 days. The calves were switched between pens twice, and in each case the 5 day observation period was repeated. In all three phases all calves spent significantly more time ( P <0.01) lying on the wooden floor: on average 656 min day -1 compared with 294 min day -1 on the synthetic floor. The time spent in the standing/walking position on both floors, occurrence of slip incidents and self-maintenance behaviour did not differ significantly between floors. The observations on use of the pen floor for lying and for standing/walking in combination with feeding, plus observations on fouling of the floors with excreta suggest that future pen design could be functionally divided into lying and walking/eating areas.  相似文献   
16.
17.
We developed a PCR assay for the rapid and sensitive detection of virulent Streptococcus suis type 2 and highly virulent S. suis type 1 in tonsillar specimens from pigs. The PCR primers were based on the sequence of the gene encoding the EF-protein of virulent S. suis type 2 strains (MRP+EF+) and highly virulent S. suis type 1 strains (MRP(s)EF+) and of the EF protein of weakly virulent S. suis type 2 strains (MRP+EF). The latter strains give rise to larger PCR products than the virulent strains of S. suis type 1 and 2. A positive control template was included in the assay to identify false negative results. The PCR was evaluated using tonsillar specimens from herds known (or suspected) to be infected and herds without an S. suis history. The results obtained with the PCR assay were compared with the results obtained with a newly developed bacteriological examination. In this bacteriological examination we were able to identify the EF-positive strains directly in the tonsillar specimens. From the 99 tonsils examined, 48 were positive in the PCR and 51 negative. All specimens from which EF-positive S. suis strains were isolated were also positive in the PCR assay. Three samples were positive in the PCR, but negative by bacteriological examination. The results demonstrated that the PCR is a highly specific and sensitive diagnostic tool for the detection of pigs carrying virulent strains of S. suis type 2 and highly virulent strains of type 1. Application of the assay may contribute to the control of S. suis infections.  相似文献   
18.
Sows mated in summer produce a greater proportion of born-light piglets (<1.1 kg) which contributes to increased carcass fatness in the progeny population. The reasons for the low birth weight of these piglets remain unclear, and there have been few successful mitigation strategies identified. We hypothesized that: 1) the low birth weight of progeny born to sows mated in summer may be associated with weight loss during the previous summer lactation; and 2) increasing early gestation feed allowance for the sows with high lactational weight loss in summer can help weight recovery and improve progeny birth weight. Sows were classified as having either low (av. 1%) or high (av. 7%) lactational weight loss in their summer lactation. All the sows with low lactational weight loss (LLStd) and half of the sows with high lactational weight loss received a standard gestation feeding regime (HLStd) (2.6 kg/d; day 0–30 gestation), whereas the rest of the sows with high lactational weight loss received a compensatory feed allowance (HLComp) (3.5 kg/d; day 0–30 gestation). A comparison of LLStd (n = 75) versus HLStd sows (n = 78) showed that this magnitude of weight loss over summer lactation did not affect the average piglet or litter birth weight, but such results may be influenced by the higher litter size (P = 0.030) observed in LLStd sows. A comparison of HLStd versus HLComp (n = 81) sows showed that the compensatory feeding increased (P = 0.021) weight gain of gestating sows by 6 kg, increased (P = 0.009) average piglet birth weight by 0.12 kg, tended to reduce (P = 0.054) the percentage of born-light piglets from 23.5% to 17.1% but reduced the litter size by 1.4 (P = 0.014). A subgroup of progeny stratified as born-light (0.8–1.1 kg) or -normal (1.3–1.7 kg) from each sow treatment were monitored for growth performance from weaning until 100 kg weight. The growth performance and carcass backfat of progeny were not affected by sow treatments. Born-light progeny had lower feed intake, lower growth rate, higher G:F, and higher carcass backfat than born-normal progeny (all P < 0.05). In summary, compensatory feeding from day 0 to 30 gestation in the sows with high weight loss during summer lactation reduced the percentage of born-light progeny at the cost of a lower litter size, which should improve growth rate and carcass leanness in the progeny population born to sows with high lactational weight loss.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号