首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
林业   7篇
农学   13篇
基础科学   4篇
  13篇
综合类   6篇
农作物   7篇
水产渔业   1篇
畜牧兽医   22篇
园艺   4篇
植物保护   10篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   5篇
  1977年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
41.
Starch granule composition and amylopectin structure affect starch digestibility, an important factor influencing wheat grain utilization for human food consumption. Six bread wheat cultivars with four belonging to the Canada Western Red Spring (CWRS) and two Canada Prairie Spring Red (CPSR) market classes were analyzed for the relationship between their grain constituents and in vitro enzymatic hydrolysis of starch. CPSR cultivars had higher starch and amylose concentrations compared with CWRS cultivars, which had a higher protein concentration. Starch granule size distribution did not differ among the genotypes, except AC Foremost, which had significantly (P < 0.05) higher volume percent of B‐type starch granules (≈15%) and lower volume percent of A‐type starch granules (≈9%) compared with other cultivars. Fluorophore‐assisted capillary electrophoresis revealed a lower content of R‐IV (DP 15–18, ≈6%) and a higher content of R‐VII (DP 37–45, ≈7%) chains in the CPSR cultivars compared with the CWRS cultivars. Starch in vitro enzymatic hydrolysis showed that compared with CWRS cultivars, the two CPSR cultivars had reduced amounts of readily digestible starch and higher amounts of slowly digestible starch and resistant starch. Consequently, the two CPSR cultivars also showed lower hydrolysis indexes in grain meal as well as extracted starch. CPSR cultivars, with higher starch and amylose concentrations, as well as a higher content of long chains of amylopectin, showed a reduced starch in vitro enzymatic hydrolysis rate.  相似文献   
42.
S. L. Ahuja  L. S. Dhayal 《Euphytica》2007,153(1-2):87-98
The aim of this study was to estimate the general combining ability of the parents and specific combining ability of hybrids considered for the development of high yielding and better quality cultivars. Seventeen genotypes and 52 F1 hybrids obtained by crossing 4 lines and 13 testers in line × tester mating system during 2003 were sown in randomized complete block design in 2004. Line × Tester analysis revealed significant GCA and SCA effects for all the traits except fibre elongation. Preponderance of non-additive gene action was obtained for seed cotton yield per␣plant and majority of its component traits including fibre traits. Among the parents: PIL-8 for days to 50% flowering, CCH-526612 for boll weight, CITH-77 for number of open bolls per plant and CNH-36 for seed cotton yield per plant were detected with higher general combining ability. Parent, CCH-526612 for 2.5% span length, fibre strength and fibre elongation and AKH-9618 for micronaire value, fibre strength and fibre elongation were good combiners for fibre quality traits. The F1s achieved high seed cotton yield by producing more number of open bolls. The high yielding hybrids with acceptable fibre quality traits were: CISV-24 × LH-1995, H-1242 × PIL-8 and RS-2283 × SGNR-2 deducted with significant SCA effects for seed cotton yield and fibre characteristics; 2.5% span length and fibre strength. These cross combinations involved at least one parent with high or average GCA effect for a particular trait.  相似文献   
43.
The effect of stocking rate on forage growth has attracted much research attention in forage science. Findings show that forage growth may be affected by stocking rate, and there is a consensus that high stocking rates lead to soil compaction, which could also in turn affect forage growth because of the changing soil hydrology and increased soil impedance to forage root penetration. In this study we used a modeling approach to investigate the effect of stocking rates on the growth of sand-bluestem forage at Fort Supply, Oklahoma. The GPFARM-Range model, which was originally developed and validated for Cheyenne, Wyoming, was recalibrated and enhanced to simulate soil compaction effects on forage growth at Fort Supply. Simulations without the consideration of soil compaction effects overestimated the forage growth under high stocking rate conditions (mean bias [MBE] = –591 kg · ha?1), and the agreement between the simulated and observed forage growth was poor (Willmott’s d = 0.47). The implementation in the model of soil compaction effects associated with high stocking rates reduced the bias (MBE = –222 kg · ha?1) and improved the overall agreement between the observed and the simulated forage growth (d = 0.68). It was concluded that forage growth under increasing soil compaction could be predicted provided such sensitivities are included in forage growth models.  相似文献   
44.
A 45% reduction in riverine total nitrogen flux from the 1980-1996 time period is needed to meet water quality goals in the Mississippi Basin and Gulf of Mexico. This paper addresses the goal of reducing nitrogen in the Mississippi River through three objectives. First, the paper outlines an approach to the site-specific quantification of management effects on nitrogen loading from tile drained agriculture using a simulation model and expert review. Second, information about the net returns to farmers is integrated with the nitrogen loading information to assess the incentives to adopt alternative management systems. Third, the results are presented in a decision support framework that compares the rankings of management systems based on observed and simulated values for net returns and nitrogen loading. The specific question addressed is how information about the physical and biological processes at Iowa State University’s Northeast Research Farm near Nashua, Iowa, could be applied over a large area to help farmers select management systems to reduce nitrogen loading in tile drained areas. Previous research has documented the parameterization and calibration of the RZWQM model at Nashua to simulate 35 management system effects on corn and soybean yields and N loading in tileflow from 1990 to 2003. As most management systems were studied for a 6 year period and in some cases weather had substantial impacts, a set of 30 alternative management systems were also simulated using a common 1974-2003 input climate dataset. To integrate an understanding of the economics of N management, we calculated net returns for all management systems using the DevTreks social budgeting tool. We ranked the 35 observed systems in the Facilitator decision support tool using N loading and net returns and found that rankings from simulated results were very similar to those from the observed results from both an onsite and offsite perspective. We analyzed the effects of tillage, crop rotation, cover crops, and N application method, timing, and amount for the 30 long term simulations on net returns and N loading. The primary contribution of this paper is an approach to creating a quality assured database of management effects on nitrogen loading and net returns for tile drained agriculture in the Mississippi Basin. Such a database would systematically extend data from intensively monitored agricultural fields to the larger area those fields represent.  相似文献   
45.
46.
Use of DNA markers in forest tree improvement research   总被引:4,自引:0,他引:4  
DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating genetic diversity in breeding populations, germplasm identification, verifying controlled crosses, and estimating seed orchard efficiencies. Because the number of DNA markers is potentially limitless, it should be possible to map individual quantitative trait loci (QTL) by linkage analysis with high-density maps. Finally, if such associations can be found, it may also be possible to design marker-assisted breeding strategies for forest trees.  相似文献   
47.
Biology and chemistry of Ginkgo biloba   总被引:2,自引:0,他引:2  
Singh B  Kaur P  Gopichand  Singh RD  Ahuja PS 《Fitoterapia》2008,79(6):401-418
Ginkgo biloba has been existing on earth since 200 million years and is considered as a "living fossil". It is among the most sold medicinal plants in the world. A number of secondary metabolites representing terpenoids, polyphenols, allyl phenols, organic acids, carbohydrates, fatty acids and lipids, inorganic salts and amino acids have been isolated from the plant. However, the main bioactive constituents are terpene trilactones and flavonoid glycosides which are considered responsible for the pharmacological activities of its standardized leaf extract. Scattered information is available on the extraction and analysis of these pharmacologically important constituents which have been compiled in the present review.  相似文献   
48.
The usual practice of estimating association and direct and indirect effects among various traits in Gossypium hirsutum is with ungrouped genetic material based on staple length and strength. During 2003–2004 and 2004–2005 genotypic and phenotypic association among ten characters were estimated in G. hirsutum genotypes: (i) set-1: 10 genotypes of low fibre strength (≤196.2 mN/tex) and medium staple length (≤25.0 mm), (ii) set-2: 10 genotypes of high fibre strength (≥235.44 mN/tex) and long staple length (≥28 mm) and (iii) set-3: 20 genotypes of set-1 and 2. The differences in the estimates of associations, direct and indirect effects for different characters in fibre quality groups were examined. The complete analysis of variance for the characters under study viz; days to 50% flowering, plant height (cm), number of monopodial and sympodial branches per plant, seed cotton yield per plant (g), boll weight (g), total number of bolls per plant, lint %, 2.5% span length (mm) and fibre strength (mN/tex) indicated highly significant genotypic differences for genotypes, years and genotype × years interaction. Variation within medium staple length and low strength (set-1), high staple length and high strength genotypes (set-2) and their interaction with year were also significant. Medium staple length and low strength (set-1) versus high staple length and high strength component (set-2) was significant for all the traits indicating significant variability between the sets. A true relationship and direct selection were observed for days to 50% flowering, number of monopodial and sympodial branches per plant with seed cotton yield in the three sets suggesting that separation of genetic material based on staple length and fibre strength for improvement of seed cotton yield through these traits is not required. Magnitude and direction of direct effect and association with yield of the other traits; plant height, number of total bolls per plant, boll weight, lint %, staple length and fibre strength differed between the sets. This study concluded that more successful planning of a breeding programme can be made through path coefficient analysis if the genetic material is grouped based on staple length and fibre strength. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
49.

Background

Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the more effective approach to tailor switchgrass with traits of interest. Successful transformations have demonstrated increased biomass yields, reduction in the recalcitrance of cell walls and enhanced saccharification efficiency. Several tissue culture protocols have been previously described to produce transgenic switchgrass lines using different nutrient-based media, co-cultivation approaches, and antibiotic strengths for selection.

Results

After evaluating the published protocols, we consolidated these approaches and optimized the process to develop a more efficient protocol for producing transgenic switchgrass. First, seed sterilization was optimized, which led to a 20% increase in yield of induced calluses. Second, we have selected a N6 macronutrient/B5 micronutrient (NB)-based medium for callus induction from mature seeds of the Alamo cultivar, and chose a Murashige and Skoog-based medium to regenerate both Type I and Type II calluses. Third, Agrobacterium-mediated transformation was adopted that resulted in 50–100% positive regenerated transformants after three rounds (2 weeks/round) of selection with antibiotic. Genomic DNA PCR, RT-PCR, Southern blot, visualization of the red fluorescent protein and histochemical β-glucuronidase (GUS) staining were conducted to confirm the positive switchgrass transformants. The optimized methods developed here provide an improved strategy to promote the production and selection of callus and generation of transgenic switchgrass lines.

Conclusion

The process for switchgrass transformation has been evaluated and consolidated to devise an improved approach for transgenic switchgrass production. With the optimization of seed sterilization, callus induction, and regeneration steps, a reliable and effective protocol is established to facilitate switchgrass engineering.
  相似文献   
50.
Microsatellite or simple sequence repeat (SSR) markers are valuable tools for many purposes, such as phylogenetic, fingerprinting and molecular breeding studies. However, such marker resources are unavailable in Assam tea (Camellia assamica ssp. assamica; Masters). With an objective to enrich the repertoire of microsatellite markers in traditional tea, 185 novel microsatellite (150 genomic and 35 genic) markers were identified from (GA)n‐enriched genomic libraries and public expressed sequence data in Assam tea. High‐quality 0.412‐Mb non‐redundant (NR) genomic data set derived from nucleotide sequencing of 1297 (GA)n‐enriched genomic positive clones and 2723 unigenes (1.33 Mb) predicted from 10 803 random public expressed sequence tags (ESTs) in C. assamica ssp. assamica were utilized for identification of genomic and genic microsatellite markers, respectively. The average number of alleles and polymorphic information content (PIC) recorded for the newly developed SSR markers were 6.17 and 0.398, respectively. The average observed (Ho) and expected (He) heterozygosity varied from 0.626 to 0.697, respectively. These markers were found to be highly transferable (74.5–100%) to cultivated (C. sinensis, C. assamica ssp. lasiocalyx) and five wild Camellia species. Genetic diversity coefficient detected a high level of divergence in 24 cultivated tea accessions (69.3%). Phylogenetic analysis revealed that major groupings were broadly in accordance with taxonomic classification of tea, and all the wild Camellia species remained as an out‐group. The high polymorphic content coupled with high rate of cross‐transferability demonstrates wider applicability of novel microsatellite markers in genotyping, genetic diversity, genome mapping and evolutionary studies in various Camellia species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号