首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   41篇
  国内免费   2篇
林业   92篇
农学   15篇
基础科学   4篇
  308篇
综合类   151篇
农作物   26篇
水产渔业   46篇
畜牧兽医   232篇
园艺   25篇
植物保护   64篇
  2023年   6篇
  2022年   11篇
  2021年   18篇
  2020年   19篇
  2019年   22篇
  2018年   24篇
  2017年   31篇
  2016年   25篇
  2015年   19篇
  2014年   32篇
  2013年   37篇
  2012年   75篇
  2011年   71篇
  2010年   44篇
  2009年   42篇
  2008年   72篇
  2007年   76篇
  2006年   71篇
  2005年   44篇
  2004年   42篇
  2003年   40篇
  2002年   34篇
  2001年   13篇
  2000年   14篇
  1999年   6篇
  1998年   8篇
  1997年   9篇
  1996年   2篇
  1995年   11篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有963条查询结果,搜索用时 15 毫秒
71.
The mode of action of endothall, an herbicide which was reported to inhibit plant protein phosphatases 1 (PP1) and 2A (PP2A), was investigated. For initial characterization, a series of bioassays was used for comprehensive physiological profiling of endothall effects which suggested a phytotoxic mode of action similar to mitotic disrupter herbicides. Unlike known microtubule disrupters, endothall did not inhibit soybean tubulin polymerization in vitro. As shown in meristematic corn root tips, endothall distorted the orientation of cell division plane and microtubule spindle structures which led to cell cycle arrest in prometaphase. In tobacco BY-2 cells, malformed spindles together with prometaphase arrest of nuclei and abnormal perinuclear microtubule patterns were detected as early as 4 h of endothall treatment. These effects were also observed after treatment with other protein phosphatase inhibitors, cantharidin and okadaic acid, which phenocopied the mitotic changes described in tonneau1 (ton1) and tonneau2 (ton2) Arabidopsis mutants. These mutants are defective in TONNEAU2 (TON2) protein, a regulatory subunit of PP2A, which governs cell division plane and microtubule orientation. Therefore, PP2A/TON2 phosphatase complex is suggested to be an in planta molecular target of endothall. However, in BY-2 cells, additional effects of endothall, including inhibition of S-phase initiation and DNA synthesis, detected by 5-ethynyl-2′-deoxyuridine (EdU) incorporation, and condensed nuclei arrested in late mitosis were observed which were not reported in Arabidopsiston1 and ton2 mutants. This result indicates that two additional checkpoints in cell cycle were blocked by endothall which are probably not associated with TON2-pathway inhibition. Possibly, inhibition of PP1 and/or other PP2A protein phosphatases are involved in the regulation of these cell cycle phenomena.  相似文献   
72.
BACKGROUND: Drip application of insecticides is an effective way to deliver the chemical to the plant that avoids off‐site movement via spray drift and minimizes applicator exposure. The aim of this paper is to present a cascade model for the uptake of pesticide into plants following drip irrigation, its application for a soil‐applied insecticide and a sensitivity analysis of the model parameters. RESULTS: The model predicted the measured increase and decline of residues following two soil applications of an insecticide to peppers, with an absolute error between model and measurement ranging from 0.002 to 0.034 mg kg fw?1. Maximum measured concentrations in pepper fruit were approximately 0.22 mg kg fw?1. Temperature was the most sensitive component for predicting the peak and final concentration in pepper fruit, through its influence on soil and plant degradation rates. CONCLUSION: Repeated simulations of pulse inputs with the cascade model adequately describe soil pesticide applications to an actual cropped system and reasonably mimic it. The model has the potential to be used for the optimization of practical features, such as application rates and waiting times between applications and before harvest, through the integrated accounting of soil, plant and environmental influences. Copyright © 2011 Society of Chemical Industry  相似文献   
73.
The effect of the endogeic earthworm species Octolasion tyrtaeum (Savigny) on decomposition of uniformly 14C-labelled lignin (lignocellulose) was studied in microcosms with upper mineral soil (Ah-horizon) from two forests on limestone, representing different stages of succession, a beech- and an ash-tree-dominated forest. Microcosms with and without lower mineral soil (Bw-horizon) were set-up; one O. tyrtaeum was added to half of them. It was hypothesised that endogeic earthworms stabilise lignin and the organic matter of the upper mineral soil by mixing with lower mineral soil of low C content. Cumulative C mineralization was increased by earthworms and by the addition of lower mineral soil. Effects of the lower mineral soil were more pronounced in the beech than in the ash forest. Cumulative mineralization of lignin was strongly increased by earthworms, but only in the beech soil (+24.6%). Earthworms predominantly colonized the upper mineral soil; mixing of the upper and lower mineral soils was low. The presence of lower mineral soil did not reduce the rates of decomposition of organic matter and lignin; however, the earthworm-mediated increase in mineralization was less pronounced in treatments with (+8.6%) than in those without (+14.1%) lower mineral soil. These results indicate that the mixing of organic matter with C-unsaturated lower mineral soil by endogeic earthworms reduced microbial decomposition of organic matter in earthworm casts.  相似文献   
74.
75.
We studied microbial and protozoan activity, diversity and abundance as affected by Cu2+ amendments ranging from 0 to 1000 μg g−1 over a 70-day period. At the end of the experiment the microbial population size, as indicated by substrate-induced respiration, had normalized for all Cu2+ concentrations, but 1000 μg g−1. Protozoan abundance was negatively affected by Cu2+, although, only in the first few weeks. A more detailed analysis of the individual components that make up the microbial and micro-faunal populations (phospholipid fatty acid (PLFA) profile and protozoan morphotypes), however, yielded a somewhat more complex picture. For the three highest Cu2+ amendments (160, 400 and 1000 μg g−1), there still was a significant reduction in number of differentiable protozoan morphotypes. The bacterial PLFA pattern suggested a shift from Gram-negative towards Gram-positive bacteria for the high amendments, a process where protozoan grazing most likely played a significant role. The ratio of the trans/cis isomers of the 16:1ω7 fatty acid indicated that Cu2+, even at low and medium concentrations, induced physiological changes in the microbial population. The relatively slight changes in total microbial and micro-faunal abundance and activity, also at the highest Cu2+ concentrations, probably reflected the ability of the community to compensate for loss of taxa by functional substitution.  相似文献   
76.
Quantitative estimation of the mineralogical composition of silt fractions of soils based on both, chemical analysis and application of Karl-Fischer-titration. I. Method This paper describes a method for calculating the mineralogical composition of the silt fractions of soils. The chemical analysis and the temperature dependence of water release are used for determining micas and feldspars, each in three components in a relatively short procedure. The release of water was measured by Karl-Fischer-titration at controlled temperatures. At temperatures above 550°C the water release of the particle size fractions correlates with their content of micas. The quantity of micas can be obtained from the amount of released water and the results of the chemical analysis. The influence of kaolinite, amphibole and the fluoride content on the calculation is described. By considering the potassium content of the mica fraction results of the chemical analysis are used to quantify feldspars.  相似文献   
77.
Partition coefficients K P of nonylphenol (NP) in soil were determined for 193 soil samples which differed widely in content of soil organic carbon (SOC), hydrogen activity, clay content, and in the content of dissolved organic carbon (DOC). By means of multiple linear regression analysis (MLR), pedotransfer functions were derived to predict partition coefficients from soil data. SOC and pH affected the sorption, though the latter was in a range significantly below the pKa of NP. Quality of soil organic matter presumably plays an important but yet not quantified role in sorption of NP. For soil samples with SOC values less than 3 g kg?1, model prediction became uncertain with this linear approach. We suggest that using only SOC and pH data results in good prediction of NP sorption in soils with SOC higher than 3 g kg?1. Considering the varying validity of the linear model for different ranges of the most sensitive parameter SOC, a more flexible, nonlinear approach was tested. The application of an artificial neuronal network (ANN) to predict sorption of NP in soils showed a sigmoidal relation between K P and SOC. The nonlinear ANN approach provided good results compared to the MLR approach and represents an alternative tool for prediction of NP partitioning coefficients.  相似文献   
78.
The aqueous extract of American skullcap (Scutellaria lateriflora L. (S. lateriflora), Lamiaceae) has been traditionally used by North American Indians as a nerve tonic and for its sedative and diuretic properties. Recent reports stated that flavonoids and possibly amino acids are responsible for the anxiolytic activity. As a part of our search for environmentally friendly solvents to extract the active components from medicinal plants, we used S. lateriflora in a comparison of accelerated solvent extraction (ASE) using water, and supercritical fluid extraction (SFE) using CO2 and 10% EtOH as modifier, at different temperatures. Flavonoids and amino acids were quantified by HPLC-UV and HPLC-MS, respectively. The flavonoid content was compared with conventional extraction methods (hot water extraction and 70% ethanol). The use of ASE at 85 degrees C with water as solvent gave the best results for flavonoid glycosides and amino acids, whereas SFE gave higher yields of flavonoid aglycones. However, the results obtained for total flavonoids were not significatively superior to hot water extraction or 70% aqueous EtOH extract.  相似文献   
79.
The combined influence of a strongly interacting cosolvent (NaCl) and a weakly interacting cosolvent (sucrose) on the heat-induced gelation of bovine serum albumin (BSA) was studied. The dynamic shear rheology of 4 wt % BSA solutions containing 0 or 20 wt % sucrose and 0-200 mM NaCl was monitored as they were heated from 30 to 90 degrees C at 1.5 degrees C min(-)(1), held at 90 degrees C for 120 min, and then cooled back to 30 degrees C at -1.5 degrees C min(-)(1). The turbidity of the same solutions was monitored as they were heated from 30 to 95 degrees C at 1.5 degrees C min(-)(1) or held isothermally at 90 degrees C for 10 min. NaCl had a similar effect on BSA solutions that contained 0 or 20 wt % sucrose, with the gelation temperature decreasing and the final gel strength increasing with increasing salt concentration and the greatest changes occurring between 25 and 100 mM NaCl. Nevertheless, the presence of sucrose did lead to an increase in the gelation temperature and final gel strength and a decrease in the final gel turbidity. The impact of NaCl on gel characteristics was attributed primarily to its ability to screen electrostatic interactions between charged protein surfaces, whereas the impact of sucrose was attributed mainly to its ability to increase protein thermal stability and strengthen the attractive forces between proteins through a preferential interaction mechanism.  相似文献   
80.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号