首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  国内免费   3篇
林业   2篇
农学   5篇
  21篇
综合类   4篇
农作物   6篇
畜牧兽医   29篇
植物保护   7篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   7篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   7篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  1999年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
21.
This study is aimed at assessing the ability of metal-resistant yeast, Candida tropicalis, to uptake cadmium from the liquid medium. The minimum inhibitory concentration of Cd2+ against C. tropicalis was 2,800 mg L?1. The yeast also showed tolerance towards Zn2+ (3,100 mg L?1), Ni2+ (3,000 mg L?1), Hg2+ (2,400 mg L?1), Cu2+ (2,300 mg L?1), Cr6+ (2,000 mg L?1), and Pb2+ (1,200 mg L?1). The yeast isolate showed typical growth curves, but low specific rate of growth was observed in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 7. The metal processing ability of the isolate was determined in a medium containing 100 mg L?1 of Cd2+. C. tropicalis could decline Cd2+ 57%, 69%, and 80% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2+ 56% and 73% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and non-protein thiol levels by 146.15% and 59.67% at 100 mg L?1 concentration, respectively. Metal tolerance and accumulation together with changes in the GSH status and non-protein thiols under Cd exposure were studied in C. tropicalis.  相似文献   
22.
Two pregnant sows were fed on a basal diet consisting of equal amounts of ground barley and ground wheat with or without addition of L-lysine hydrochloride. Plasma amino acid and blood urea levels varied according to the time after feeding. Almost all the essential amino acids reached a maximum level after one hour and then declined at four hours after feeding. The results suggested that samples taken at between one and four hours after feeding were responsive to changes in dietary composition and could provide a measure to evaluate the amino acid pattern in relation to feeding. Both plasma amino acid and blood urea data suggested that lysine was the first limiting amino acid in the basal diet.  相似文献   
23.
24.
25.
With the aim to select powerful microbial strains to be used for the enhancement of maize yield and resistance to abiotic and biotic stresses, we tested five endophytic bacterial strains previously isolated from maize roots. A range of different laboratory assays in regard to potential plant growth promotion was performed and strains were further evaluated for improving growth of five maize cultivars under axenic and natural soil conditions. Endophytic colonization was an additional component in our selection process as it is of high importance for an inoculant strain to efficiently colonize the plant environment. All strains had the potential to improve maize seedling growth under axenic conditions. Enterobacter sp. strain FD17 showed both the highest growth-promoting activity under axenic conditions as well as colonization capacity. FD17 was therefore selected for further plant tests in a net house, in which two different maize cultivars were grown in large pots until ripening and subjected to outdoor climatic conditions. Results showed that inoculation significantly increased plant biomass, number of leaves plant?1, leaf area, and grain yield up to 39 %, 14 %, 20 %, and 42 %, respectively, as compared to the un-inoculated control. Similarly, inoculation also improved the photochemical efficiency of photosystem II (PSII) of maize plant and reduced the time needed for flowering. We also confirmed that strain FD17 is able to colonize the rhizosphere, roots and stems. Based on rigorous testing, Enterobacter sp. strain FD17 showed the highest potential to promote growth and health of maize grown under natural conditions. This study suggested that in vitro plant growth-promoting traits and potential of maize seedling growth promotion by bacterial endophytes could be used for the selection of potential inoculant strains subjected for further testing as bio-inoculant under field conditions.  相似文献   
26.
Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an 'in house' enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.  相似文献   
27.
Farmyard manure (FYM) improves various soil parameters and to a large extent, the availability of water and nutrient to crops when it is applied to the soil. This study aims to further investigate the short-term effects of different levels of FYM on maize plants and soil parameters. Maize plants grown in pot culture were treated with no FYM (control), recommended NPK (inorganic fertilizers), and FYM at 2, 4, 6, 8, and 10 t ha?1 along with recommended NPK, and the cultures were analyzed 8 weeks after germination. Soil bulk density and soil pH decreased with the increasing levels of FYM, whereas soil porosity, soil organic matter (SOM), soil water content, plant height, root and shoot yield, and NPK uptake of maize were increased compared with the control or recommended NPK, respectively. The present results indicate that short-term application of higher FYM levels improves soil properties. Furthermore, the application of FYM at only higher rates significantly increases the nutrient uptake of maize plants due to improved soil properties. The supply of different amounts of nutrients increases biomass and nutrient uptake in plants.  相似文献   
28.
The objective of this paper is to evaluate the performance of the conventional system of classifying maturity type in potato and to provide a concept of maturity type based on crop physiology. We present an approach in which physiological traits are used to quantify and assess maturity type unambiguously for a set of varieties covering a wide range of maturity classes and a diploid F1 population separating for maturity and well-adapted to Dutch growing conditions, both grown in six environments. We defined physiological maturity based on four traits: the duration of maximum green canopy, the area under the green canopy cover progress curve, and the rate and duration of tuber bulking. The results indicated that physiological maturity type criteria tended to define maturity classes less ambiguously than the conventional criterion. Moreover, the conventional criterion was subject to more random noise and lacked stability and/or repeatability compared with the physiological traits. The physiological maturity criteria also illustrated the physiological trade-offs that existed between the selected traits and underlined the subtle complexities in classifying maturity type. This study highlighted the capabilities of different maturity type criteria in discriminating between different maturity classes among the large set of genotypes. Our new approach involving key physiological traits could be beneficial in offering physiology-based criteria to re-define maturity type. An improved criterion based on important physiological traits would allow relating the maturity to crop phenology and physiology. These new criteria may be amenable to further genetic analysis and could help in designing strategies for potato ideotype breeding for genotypes with specific maturity types.  相似文献   
29.
Arid regions are highly vulnerable and sensitive to drought. The crops cultivated in arid zones are at high risk due to the high evapotranspiration and water demands. This study analyzed the changes in seasonal and annual evapotranspiration(ET) during 1951–2016 at 50 meteorological stations located in the extremely arid, arid, and semi-arid zones of Pakistan using the Penman Monteith(PM) method. The results show that ET is highly sensitive and positively correlated to temperature, solar radiation, and wind speed whereas vapor pressure is negatively correlated to ET. The study also identifies the relationship of ET with the meteorological parameters in different climatic zones of Pakistan. The significant trend analysis of precipitation and temperature(maximum and minimum) are conducted at 95% confidence level to determine the behaviors of these parameters in the extremely arid, arid, and semi-arid zones. The mean annual precipitation and annual mean maximum temperature significantly increased by 0.828 mm/a and 0.014℃/a in the arid and extremely arid zones, respectively. The annual mean minimum temperature increased by 0.017℃/a in the extremely arid zone and 0.019℃/a in the arid zone, whereas a significant decrease of 0.007℃/a was observed in the semi-arid zone. This study provides probabilistic future scenarios that would be helpful for policy-makers, agriculturists to plan effective irrigation measures towards the sustainable development in Pakistan.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号