首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   8篇
  国内免费   3篇
林业   8篇
农学   11篇
基础科学   4篇
  58篇
综合类   19篇
农作物   9篇
水产渔业   4篇
畜牧兽医   24篇
园艺   4篇
植物保护   17篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   17篇
  2018年   19篇
  2017年   15篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   17篇
  2012年   8篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1981年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
81.
The study presents a protocol for the preparation of phenolics-saponins rich fraction (PSRF), a new active nutraceutical from defatted rice bran followed by the determination of its antioxidant properties. PSRF was prepared by employing a simple alcoholic fractionation procedure on the crude alcoholic extract (CAE) of defatted rice bran. PSRF was found to be significantly higher in the contents of total phenolic, saponin, and steroidal saponin than CAE and its counterpart, aqueous fraction (AqF) (p < 0.05). Except for iron chelating activity, PSRF exhibited notably higher activity than CAE and AqF in all antioxidant activity assays performed (p < 0.05). HPLC-DAD analysis revealed that PSRF contained substantially higher amounts of gallic acid, 4-hydroxybenzoic acid, caffeic acid, p-coumaric acid, and ferulic acid than CAE and AqF (p < 0.05). In conclusion, alcoholic fractionation of CAE simultaneously concentrated the phenolic compounds and saponins into PSRF, thus contributed to its higher antioxidant activity. Due to its elevated antioxidant properties, PSRF may be recommended for investigation as an active ingredient in the nutraceutical, functional food, and natural food preservative formulations. This is also the first report suggesting defatted rice bran as a potential and sustainable source of saponins.  相似文献   
82.
83.
Phytoparasitica - Tillage is among the most important soil management practices, which exert strong impacts on weed flora composition in different cropping systems. The large-scale adoption of...  相似文献   
84.
ABSTRACT

The present study was to delineate management zones (MZs) in salt affected Mahakalpada block in eastern India by capturing both spatial variability of soil parameters along with satellite derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Grid wise 237 soil samples collected from the study area were analyzed and spatial maps were generated for physicochemical properties, DTPA extractable micronutrients, i.e. iron, zinc, copper, and manganese and major nutrients, i.e. available nitrogen (AN), phosphorous (AP), and potassium (AK). Soil electrical conductivity and AK showed a high CV of 100% and 56.7%, respectively. Principal component analysis was performed using the soil spatial maps, NDVI and EVI maps and only four principal components which produced eigenvalues > 1 and accounting for 75.4% of the total variability were retained for further analysis. Further, fuzzy c-mean clustering was used to delineate the MZs based on fuzzy performance index (FPI) and normalized classification entropy (NCE) was used for identifying the three MZs. There was a significant difference between MZ1 and MZ2 for all the variables except AN and EVI whereas all the variables were significantly different between MZ1 and MZ3 highlighting the usefulness of MZs delineation technique for site-specific nutrient management.  相似文献   
85.
该研究选用蒸汽爆破油菜秸秆,对其进行羟基磷灰石和KMnO4浸渍处理,再用壳聚糖和NaOH溶液改性所获得的生物质炭改性,以比较表面特性变化和吸附/解吸Cd~(2+)的特征。结果表明,改性处理可有效地在生物质炭表面负载相应官能团,如羟基磷灰石处理使生物质炭表面磷酸盐增多,比表面积提高至225.68 m2/g;而壳聚糖、KMnO4和NaOH处理,则引入了-NH2和-OH、-COOH等酸性含氧官能团。尽管改性生物质炭表面电荷减少,但Cd~(2+)吸附容量却提高了13%~315%,其吸附行为可用Langmuir等温吸附式拟合,并符合Pseudosecondorder吸附动力学方程。改性后,生物质炭对Cd~(2+)的吸附主要为专性吸附,其初始吸附速率提高了65%~379%,而解吸率降低了17%~91%,表明对Cd~(2+)的吸附更快且更加稳定,具有良好的应用潜力。  相似文献   
86.
The effect of inoculation of Rhizobium or Pseudomonas, or both, in the presence and absence of phosphorus pentoxide (P2O5) fertilizer on wheat yield was tested. The experiment was conducted outdoors in potted soil during two consecutive years under natural conditions. Rhizobial strain (Thal 8-chickpea nodulating bacteria) and Pseudomonas strain (54RB), both indigenous P solubilizers were applied in broth culture at seedling stage. Fertilizer in the form of P2O5 was an additional treatment applied at sowing time. Results revealed that inoculation of Pseudomonas strain in presence of phosphorus (P) fertilizer increased yield up to 41.8% when it was compared with only P fertilizer applied. Co-inoculation of Rhizobium and Pseudomonas strains with the P2O5 treatment however resulted in increased grains yield by 10% over the P2O5 treatment alone. It is inferred that inoculation with Rhizobium and Pseudomonas combined with P2O5 is not only environmentally beneficial but also economically sound and productive, with wheat yield increases of 10% to 42%.  相似文献   
87.
Seeds enriched with zinc (Zn) are ususally associated with better germination, more vigorous seedlings and higher yields. However, agronomic benefits of high‐Zn seeds were not studied under diverse agro‐climatic field conditions. This study investigated effects of low‐Zn and high‐Zn seeds (biofortified by foliar Zn fertilization of maternal plants under field conditions) of wheat (Tritcum aestivum L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) on seedling density, grain yield and grain Zn concentration in 31 field locations over two years in six countries. Experimental treatments were: (1) low‐Zn seeds and no soil Zn fertilization (control treatment), (2) low‐Zn seeds + soil Zn fertilization, and (3) Zn‐biofortified seeds and no soil Zn fertilization. The wheat experiments were established in China, India, Pakistan, and Zambia, the rice experiments in China, India and Thailand, and the common bean experiment in Brazil. When compared to the control treatment, soil Zn fertilization increased wheat grain yield in all six locations in India, two locations in Pakistan and one location in China. Zinc‐biofortified seeds also increased wheat grain yield in all four locations in Pakistan and four locations in India compared to the control treatment. Across all countries over 2 years, Zn‐biofortified wheat seeds increased plant population by 26.8% and grain yield by 5.37%. In rice, soil Zn fertilization increased paddy yield in all four locations in India and one location in Thailand. Across all countries, paddy yield increase was 8.2% by soil Zn fertilization and 5.3% by Zn‐biofortified seeds when compared to the control treatment. In common bean, soil Zn application as well as Zn‐biofortified seed increased grain yield in one location in Brazil. Effects of soil Zn fertilization and high‐Zn seed on grain Zn density were generally low. This study, at 31 field locations in six countries over two years, revealed that the seeds biofortfied with Zn enhanced crop productivity at many locations with different soil and environmental conditions. As high‐Zn grains are a by‐product of Zn biofortification, use of Zn‐enriched grains as seed in the next cropping season can contribute to enhance crop productivity in a cost‐effective manner.  相似文献   
88.
The boron (B) sufficiency range for plant growth is narrow and its management is problematic under brackish irrigation water. This study was conducted to evaluate the B requirement of mungbean at different sodium adsorption ratios of irrigation waters (SARiw) [control, 8 and 16 (mmolc L?1)1/2]. The boron adsorption characteristics of a loamy soil were first determined in the laboratory by equilibrating 2.5 g soil with 0.01 M CaCl2 solution containing different B levels. Boron rates for a pot study were computed against different soil solution levels by fitting sorption data in a modified Freundlich model [x/m = K f (EBC)1/n ]. The maximum increase in shoot dry matter was 11.9% when B was applied at 1.29 mg kg?1 soil at control SARiw. Visual leaf B toxicity symptoms appeared at higher B rates and became severe at higher SARiw. By contrast to Ca, shoot concentrations of B and Na increased significantly with B application and SARiw. For optimum shoot growth, internal and external B requirements were 25 mg B kg?1 shoot dry matter and 0.39 mg B L?1 soil solution, respectively, at control SARiw. At higher SARiw, a lower concentration of B in plant shoots and soil solution had an inhibitory effect on plant growth.  相似文献   
89.
Drought severely affects yield and its quality in different plants. In a field experiment, maize was exposed to drought stress at vegetative, silking, and kernel-filling growth stages to determine the drought-induced changes in kernel yield and quality traits. The experiment was laid-out in a randomized complete block design with four replications. Withholding water at the vegetative stage was very effective in increasing protein, total amino acids, total soluble sugars, glucose, and sucrose contents in maize kernels. In contrast, drought applied at the kernel-filling stage increased the total free amino acids, total phenolics, and activities of catalase (CAT) and ascorbate peroxidase (APX) in maize kernels. Drought at the vegetative stage improved the kernel quality while at the silking stage severely affected kernel yield in maize. Taken together, the results suggested that incidence of drought should be avoided at the silking stage to minimize kernel yield losses and decrease in kernel quality in maize.  相似文献   
90.
Six wheat genotypes (three female and three male) were crossed for the study of some quantitative traits in wheat. Analysis of variance showed a highly significant difference for all the characters except flag leaf area, which was significant. Testers revealed that LU26S was the best general combiner only for plant height. Mehraj showed a good general combining ability effect on plant height, flag leaf area, peduncle length, and 1000-grain weight. Farid 2006 was the best male parent as general combiner for plant height, peduncle length, spike length, number of grains per spike, and grain yield per plant. The wheat parental lines revealed that 9381 was the best general combiner for plant height, flag leaf area, peduncle length, 1000-grain weight, and grain yield per plant. Whereas 9428 was the best general combiner for flag leaf area, spike length, and number of spikelets per spike. Among crosses, LU26S × 9272, LU26S × 9381, Mehraj × 9272, and Mehraj × 9381 showed a significant effect of specific combining ability (SCA) on grain yield per plant. Other crosses with significant and positive SCA effects were LU26S × 9272 on plant height and 1000-grain weight grain yield per plant, LU26S × 9428 on peduncle length, and Mehraj × 9381 on plant height and grain yield per plant. These crosses with significant effects of general combining ability (GCA) on grain yield per plant can be used in the development of new varieties. These crosses with nonadditive genes would give transgressive segregants. For yield improvement, vigilant selection of the potent transgressive segregants through family selection would be valuable for yield enhancement. A total of 15 SSR primers of Xgwm series and 5 of X series were used to find out the codominant loci in the hybrid and single dominant loci in parents. Out of 15 primers only, Xgwm-314 gave the polymorphic banding pattern. This primer showed the polymorphic dominant loci in the parents (LU26S, Mehraj, 9272 and 9381) and codominant loci midway between these parents. Therefore, this SSR primer was used to confirm the two best performing hybrids (LU26S × 9272 and Mehraj × 9381) on the bases of positively significant effects of GCA and SCA on plant height, 1000-grain weight and grain yield per plant, and other economically important traits. The two hybrids namely LU26S × 9272 and Mehraj × 9381 can be used in the further breeding program for the development of high yielding varieties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号