首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   8篇
  国内免费   3篇
林业   8篇
农学   11篇
基础科学   4篇
  58篇
综合类   19篇
农作物   9篇
水产渔业   4篇
畜牧兽医   24篇
园艺   4篇
植物保护   17篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   17篇
  2018年   19篇
  2017年   15篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   17篇
  2012年   8篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1981年   1篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
11.
This study was aimed to explore the comparative acidifying properties of 2‐hydroxy‐4‐(methylthio) butanoic acid (HMTBA) and a combination of DL‐methionine (DLM) and acidifier in male broiler production. A total of 480 1‐day‐old broiler chicks were randomly divided into four treatments: A (low HMTBA, 0.057% HMTBA); B (low acidifier, 0.05% DLM + 0.057% acidifier); C (high HMTBA, 0.284% HMTBA); and D (high acidifier, 0.25% DLM + 0.284% acidifier). At 21 d, growth performance, chyme pH, digestive enzyme activities, and intestinal microflora were measured. The pH of crop, gizzard, and ileum contents was higher in the HMTBA treatment group than in DLM + acidifier treatment group. Furthermore, acidifier supplementation promoted growth of butyrate‐producing bacteria such as Faecalibacterium, whereas high HMTBA (0.284%) inhibited the proliferation of acid‐producing bacteria including Roseburia and Collinsella. The chymotrypsin activity was lower in the HMTBA group than in the DLM + acidifier group. In contrast, high‐level HMTBA group showed higher average daily gain and average daily feed intake than the DLM + acidifier group. These results suggested that HMTBA work through different pathways with DLM plus acidifier.  相似文献   
12.
Understanding the environmental factors that influence the suppression of disease-suppressive strains of Pseudomonas fluorescens is an essential step toward improving the level and reliability of their biocontrol activity. A 0.8 M NaCl concentration was optimal for in vitro survival and growth of IE-6S+ while, nematicidal activity by IE-6S+ was maximal when the bacterium was exposed to 0.4 M NaCl. The bacterium was highly sensitive to high (1.6 M) NaCl concentration. Culture filtrate of the bacterium resulting from the medium supplemented with 0.2 or 0.4 M NaCl showed the presence of secondary metabolite, hydrogen cyanide (HCN). Soil amendment with IE-6S+ alone or in conjunction with up to 0.8 M NaCl enhanced bacterial efficacy towards Meloidogyne javanica, the root-knot nematode. Soil amendment with NaCl up to 0.8 M also resulted in enhanced bacterial rhizosphere colonization and growth of tomato seedlings. Protein content of the shoot was reduced when soil was amended with 1.6 M NaCl. Inner root establishment of the bacterium was greatly affected in the soils treated with 1.6 M NaCl. Under in vitro conditions, IE-6S+ showed enhanced growth when kept at ambient oxygen conditions while the growth of bacterium affected when incubated at low oxygen conditions. Culture filtrate of the bacterium resulting from low oxygen level caused greater mortality of M. javanica juveniles in vitro compared with the filtrates obtained from ambient oxygen conditions. Culture filtrate from low oxygen conditions also showed the presence of hydrogen cyanide while those from ambient oxygen condition did not. Under glasshouse conditions, regardless of bacterial application, nematode penetration rate was greater when the pots were watered from the top; nematode penetration was lowered in bacterized pots compared with non-bacterized controls. IE-6S+ applied in the pots either watered from the top or bottom had no significant impact on growth of tomato but protein contents of the leaves increased after treatment with the bacterium. Rhizosphere and inner root colonization of the bacterium increased when the pots were watered from the top. Under in vitro conditions, with an increased iron concentration in the form of FeEDDHA, growth of IE-6S+ and its nematicidal activity increased. Culture filtrate of IE-6S+ obtained from liquid King's B medium supplemented with 0.5 or 1.0 mM FeEDDHA showed the presence of HCN. Under glasshouse conditions, soil treated with FeEDDHA alone did not reduce nematode penetration rates but did reduce greatly when applied in conjunction with IE-6S+. FeEDDHA applied at 0.5 mg/kg of soil in combination with IE-6S+ significantly enhanced plant growth and leaf protein contents. FeEDDHA at 1 mg/kg of soil increased bacterial populations both in the rhizosphere and inner root tissues of tomato.  相似文献   
13.
The sorption efficiency of indigenous rice (Oryza sativa) bran for the removal of organics, that is, benzene, toluene, ethylbenzene, and cumene (BTEC), from aqueous solutions has been studied. The sorption of BTEC by rice bran is observed over a wide pH range of 1-10, indicating its high applicability to remove these organics from various industrial effluents. Rice bran effectively adsorbs BTEC of 10 microg mL(-1) sorbate concentration from water at temperatures of 283-323 +/- 2 K. The effect of pH, agitation time between solid and liquid phases, sorbent dose, its particle size, and temperature on the sorption of BTEC onto rice bran has been studied. The pore area and average pore diameter of rice bran by BET method are found to be 19 +/- 0.7 m(2) g(-1) and 52.8 +/- 1.3 nm. The rice bran exhibits appreciable sorption of the order of 85 +/- 3.5, 91 +/- 1.8, 94 +/- 1.4, and 96 +/- 1.2% for 10 microg mL(-1) concentration of benzene, toluene, ethylbenzene, and cumene, respectively, in 60 min of agitation time using 0.1 g of rice bran at pH 6 and 303 K. The sorption data follow Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models. Sorption capacities have been computed for BTEC by Freundlich (32 +/- 3, 61 +/- 14, 123 +/- 28, and 142 +/- 37 m mol g(-1)), Langmuir (6.6 +/- 0.1, 7.5 +/- 0.13, 9.5 +/- 0.22, and 9.4 +/- 0.18 m mol g(-1)), and D-R isotherms (11 +/- 0.5, 16 +/- 1.3, 30 +/- 2.2, and 33 +/- 2.5 m mol g(-1)), respectively. The Lagergren equation is employed for the kinetics of the sorption of BTEC onto rice bran and first-order rate constants (0.03 +/- 0.002, 0.04 +/- 0.003, 0.04 +/- 0.003, and 0.05 +/- 0.004 min(-1)) have been computed for BTEC at their concentration of 100 mug mL(-1) at 303 K. Studies on the variation of sorption with temperatures (283-323 K) at 100 mug mL(-1) sorbate concentration gave thermodynamic constants DeltaH (kJ mol(-1)), DeltaG (kJ mol(-1)), and DeltaS (J mol(-1) K(-1)). The results indicate that the sorption of organics onto rice bran is exothermic and spontaneous in nature under the optimized experimental conditions selected. This sorbent has been used successfully to accumulate and then to determine benzene, toluene, and ethylbenzene in wastewater sample.  相似文献   
14.
15.
BACKGROUND: Rhizobacteria have a good potential to suppress soilborne diseases, but their efficacy against sugarcane pests is rarely reported. Bacterial strains isolated from the rhizosphere of sugarcane were evaluated for their potential to suppress red rot disease on two susceptible varieties, Co‐1148 and SPF‐234, under field conditions. The strains were also characterised for the production of secondary metabolites associated with their antagonistic activity. RESULTS: One out of four strains, the Pseudomonas putida strain NH‐50 (EU627168), reduced disease severity by 44–60% in different field trials. This potent antagonistic strain produced pyoluteorin antibiotic, as confirmed by high‐performance liquid chromatography (HPLC). The PltB gene involved in pyoluteorin synthesis was amplified from the P. putida strain NH‐50 and sequenced. The extracellular metabolites and volatile and diffusible antibiotics secreted by the tested strains inhibited mycelial growth of Glomerella tucumensis (Speg.) Arx & E Mull in vitro by 7–55%. CONCLUSION: The pyoluteorin‐producing bacteria P. putida strain NH‐50 significantly reduced disease severity on both sugarcane varieties, irrespective of fungal inoculation, i.e. either inoculated through stem or through soil. This strain also possesses other plant growth characteristics and can be used as a biopesticide for sugarcane crop. Copyright © 2011 Society of Chemical Industry  相似文献   
16.
The antimicrobial metabolites 2,4-diacetylphloroglucinol (2,4-DAPG) and pyoluteorin contribute to the ability of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogens. P. fluorescens strain CHA0 and its derivatives CHA89 (antibiotics-deficient) and CHA0/pME3424 (antibiotics overproducing) were investigated as potential biocontrol agents against Meloidogyne javanica the root-knot nematode. Exposure of root-knot nematode to culture filtrates of P. fluorescens under in vitro conditions significantly reduced egg hatch and caused substantial mortality of M. javanica juveniles. Nutrient broth yeast extract (NBY) medium amended with 2% (w/v) glucose or 1 mM EDTA markedly repressed hatch inhibition activity of the strain CHA0 but not that of CHA0/pME3424 or CHA89. On the other hand, NBY medium amended with glucose significantly enhanced nematicidal activity of the strain CHA0/pME3424. Neither glucose nor EDTA had an influence on the nematicidal activity of the strains CHA0 and CHA89. Under in vitro conditions, antibiotic overproducing strain CHA0/pME3424 and CHA0 expressed phl‘-’lacZ reporter gene but strain CHA89 did not. Expression of the reporter gene reflects actual production of DAPG. In general, CHA0/pME3424 expressed reporter gene to a greater extent compared to its wild type counterpart CHA0. Regardless of the bacterial strains, reporter gene expression was markedly enhanced when NBY medium was amended with glucose but EDTA had no such effect. A positive correlation between the degree of juvenile mortality and extent of phl‘-’lacZ reporter gene expression was also observed in vitro. Strain CHA0 produced zones of 4-6 mm on MM medium containing gelatin while strain CHA0/pME3424 and CHA89 did not. When MM medium containing gelatin was amended with 2% glucose of 1 mM EDTA size of haloes produced by the strain CHA0 reduced to 2 mm. Under glasshouse conditions aqueous cell suspension of the strains CHA0 or CHA0/pME3424 at various inoculum levels (107, 108 or 109 cfu ml−1) significantly reduced root-knot development. CHA89 caused significant reduction in galling when applied at 109 cfu ml−1. To better understand the mechanism of nematode suppression, split root bioassay was performed. Split-root experiments, that guarantee a spatial separation of inducing agent and a challenging pathogen, showed that soil treatment of one half of the root system with cell suspension of CHA0 or CHA0/pME3424 resulted in a significant systemic induced resistance leading to reduction of M. javanica infection of tomato roots in the non-baterized nematode treated half. The results clearly suggest that the antibiotic 2,4-DAPG from P. fluorescens CHA0 act as the inducing agents of systemic resistance in tomato roots. Populations of CHA0 and its derivatives declined progressively by 10-fold between first and fourth harvests (0-21 days after inoculation). However, bacterial populations increased at final harvest (28 days after application).  相似文献   
17.
Common ragweed invasion poses serious risks to human health, biodiversity and agricultural production throughout the world. Although ragweed has an enormous potential to expand its range in Turkey, studies on ragweed have only concentrated on the Black Sea region. An exploratory survey was conducted to observe the level of ragweed occurrence on the nodes of predecided 10 × 10 km grids in the Thrace region of Turkey. Ragweed populations were observed in 44 out of 129 sites in a wide range of habitats, including roadsides, pastures, agricultural fields and non‐agricultural areas. The highest levels of ragweed infestation were recorded in the agricultural fields, followed by the roadsides. The most‐invaded crop was sunflower. The sunflower fields had the highest ragweed coverage as well and invasion even resulted in crop failure alongside the field borders. A spatial analysis of the data indicated that ragweed exhibited an aggregated pattern over the Thrace region. Ragweed distribution was not associated with the characteristics of the soils, which had a varying range of pH, electrical conductivity and texture. The results revealed that ragweed invasion can arise as a serious weed problem, interfering with the sustainability of sunflower production in Thrace and other sunflower‐producing regions of the country. A high degree of ragweed infestation also will contribute to the pollen level counts for the most crowded cities in the region, posing a serious danger to human health.  相似文献   
18.

Purpose

The present research aimed to assess the influence of two phosphorous (P) amendments on metal speciation in rhizosphere soil and the soil–plant transfer of metals.

Materials and methods

Complementary experiments were performed: field experiments on a contaminated cultivated soil and laboratory experiments on an uncultivated contaminated soil to highlight the mechanisms involved in metal-phosphorous interactions. In laboratory experiment, P amendments were added at 120 mg P/kg of soluble KH2PO4 amendment and 9,000 mg P/kg of solid Ca5(PO4)3OH amendment.

Results and discussion

Field-culture results showed the possible food-chain contamination due to Pb, Cd, Cu, and Zn phytoaccumulation by pea and mustard plants from a cultivated agricultural soil. Moreover, P-metal complexes were observed by microscopy in the rhizosphere soil. In laboratory experiments, the application of P amendments significantly increased Pb and Zn level in rhizosphere soil compared to control. Phosphate amendments significantly increased metal-P fraction and decreased “oxides” and “organic matter” fractions of Pb and Zn. Soluble-P amendment was more effective than solid P amendment in changing Pb and Zn speciation. The changes in metal speciation are higher in the rhizosphere soil of pea than tomato. Application of P amendments increased Pb and Zn TF root/soil but decreased TF shoot/root.

Conclusions

The effectiveness of in situ metal immobilization technique varies with the type and quantity of applied P amendment as well as plant and metal type.  相似文献   
19.
Estimating variation in grain mineral concentration and bioavailability in relation to grain yield and the year of cultivar release is important for breeding wheat with increased content of bioavailable minerals. The grain yield and yield components, grain phytate concentration, and concentration and bioavailability of minerals (zinc Zn, iron Fe and calcium Ca) in wheat grains were estimated in 40 wheat cultivars released in Punjab (Pakistan) during the last five decades. Mean grain Zn and Ca concentrations in current-cultivars were significantly lower (≥14%) than in obsolete cultivars released during the Green Revolution (1965–1976). Much of this variation was related to increased grain weight in current-cultivars. There was a positive correlation among minerals (r = 0.39 or higher, n = 40) and minerals with phytate in wheat grains (r = 0.38 or higher, n = 40). The tested cultivars varied widely in grain yield and grain phytate-to-mineral molar ratios (phytate:mineral). Compared to obsolete cultivars, the current-cultivars had a higher phytate:mineral ratio in grains, indicating poor bioavailability of minerals to humans. The study revealed a non-significant relationship between grain yield and phytate:mineral ratios in grains. Therefore, breeding for lower phytate:mineral ratios in wheat grains can ensure increased mineral bioavailability without significant reduction in the yield potential. Future breeding should be focused on developing new genotypes suitable for mineral biofortification and with increased mineral bioavailability in grains.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号