首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3356篇
  免费   209篇
  国内免费   9篇
林业   303篇
农学   184篇
基础科学   49篇
  795篇
综合类   188篇
农作物   533篇
水产渔业   420篇
畜牧兽医   680篇
园艺   94篇
植物保护   328篇
  2024年   3篇
  2023年   33篇
  2022年   110篇
  2021年   140篇
  2020年   160篇
  2019年   198篇
  2018年   246篇
  2017年   246篇
  2016年   230篇
  2015年   118篇
  2014年   167篇
  2013年   365篇
  2012年   200篇
  2011年   226篇
  2010年   181篇
  2009年   125篇
  2008年   198篇
  2007年   114篇
  2006年   77篇
  2005年   54篇
  2004年   45篇
  2003年   45篇
  2002年   32篇
  2001年   20篇
  2000年   36篇
  1999年   16篇
  1998年   16篇
  1997年   14篇
  1996年   20篇
  1995年   16篇
  1994年   14篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   10篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1979年   5篇
  1975年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1967年   3篇
排序方式: 共有3574条查询结果,搜索用时 948 毫秒
71.
Journal of Plant Diseases and Protection - In the original publication, the article title was incorrectly published as ‘Impact of leave infestation by herbivorous insects on the elemental...  相似文献   
72.
The toxic effect of multi metals mixture which exist simultaneously in aquatic ecosystem on natural phytoplankton assemblages (green algae, blue-green algae and diatoms) was studied. For this purpose a laboratory scale unit was designed to evaluate the effect of continuous flow metals mixture in forms if triple and penta metals in Nile water algae. Clear changes in algal biomass in terms of chlorophyll a (chl a) took place when subjected to metals combination. The rise or decline in chl a was in relation with other algal pigments (chl b, chl c, carotenoides and phenophytin), protein and carbohydrate content of algal cells. Substantial changes in phytoplankton community structure was detected and the most tolerant group was blue-green algae followed by green algae while diatoms was the most sensitive group. The most dominant species in all cases were blue-green alga Oscillatoria mougeotii and green alga Scenedesmus quadricauda. In addition clear changes in morphological shape was observed for tolerant species belonging to the three algal groups. Nile water algae has ability to remove and accumulate metals in the following order therefore Zn > Cd > Ni > Cu > Cr. In addition, phytoplankton has ability to recovered from the stress of metals when eliminated from the media and the recovered biomass was nearly equivalent to that before exposing to metals stress. The overall effect of metals mixture depending on the type and number of metals, the algal community structure and ratio between different morphological forms of algae (unicellular, colonial and filamentous).  相似文献   
73.
The effects of B and Ca treatments on root growth, nutrient localization and cell wall properties in wheat ( Triticum aestivum L.) plants with and without Al stress were investigated. Seedlings were grown hydroponically in a complete nutrient solution for 7 d and then treated with B (0, 40 μM), Ca (0, 2,500 μM), and Al (0, 100 μM) in a 500 μM CaCl2 solution for 8 d. The cell wall materials (CWM) were extracted with a phenol: acetic acid: water (2:1:1 w/v/v) solution and used for subsequent pectin extraction with trans -1,2-diami-nocyclohexane- N,N,N,N -tetraacetic acid (CDTA) and Na2CO3 solutions. Boron, Ca, and B + Ca treatments enhanced root growth by 19.5, 15.2, and 27.2%, respectively, compared to the control (pH 4.5). Calcium and B+Ca treatments enhanced root growth with Al stress by 43 and 54%, respectively, while B did not exert any effect. The amounts of CWM and pectin per unit of root fresh weight increased by Al treatment, whereas the Ca and B+Ca treatments slightly reduced the contents of these components. Seventy-four percent of total B, 69% of total Ca, and 85% of total Al were located in the cell wall in the B, Ca, and Al treatments, respectively and 32% of total B, 33% of total Ca, and 33% of total Al were located in the CDTA-soluble and Na2CO3-soluble pectin fractions. A more conspicuous localization of B was observed in the presence of Al. Aluminum treatment markedly decreased the Ca content in the cell wall as well as pectin fractions, mainly in the case of the CDTA-soluble pectin fraction. Boron + Ca treatment decreased the Al content in the cell wall and pectin fractions compared to the Ca treatment alone in the presence of Al. It is concluded that the B+Ca treatment enhanced root growth and, B and Ca uptake, and helped to maintain a normal B and Ca metabolism in the cell walls even in the presence of Al.  相似文献   
74.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   
75.
The paper compares semi-automated interpolation methods to produce soil-class maps from profile observations and by using multiple auxiliary predictors such as terrain parameters, remote sensing indices and similar. The Soil Profile Database of Iran, consisting of 4250 profiles, was used to test different soil-class interpolators. The target variables were soil texture classes and World Reference Base soil groups. The predictors were 6 terrain parameters, 11 MODIS EVI images and 17 physiographic regions (polygon map) of Iran. Four techniques were considered: (a) supervised classification using maximum likelihoods; (b) multinominal logistic regression; (c) regression-kriging on memberships; and (d) classification of taxonomic distances. The predictive capabilities were assessed using a control subset of 30% profiles and the kappa statistics as criterion. Supervised classification and multinominal logistic regression can lead to poor results if soil-classes overlap in the feature space, or if the correlation between the soil-classes and predictors is low. The two other methods have better predictive capabilities, although both are computationally more demanding. For both mapping of texture classes and soil types, the best prediction was achieved using regression-kriging of indicators/memberships (κ = 45%, κ = 54%). In all cases kappa was smaller than 60%, which can be explained by the preferential sampling plan, the poor definition of soil-classes and the high variability of soils. Steps to improve interpolation of soil-class data, by taking into account the fuzziness of classes directly on the field are further discussed.  相似文献   
76.
Asian bears face major threats due to the impact of human activities as well as a critical lack of knowledge about their status, distribution and needs for survival. Once abundant in northern Pakistan, the Himalayan brown bear (Ursus arctos isabellinus) has been exterminated in most of its former distribution range. It presently occurs sparsely, in small populations, the Deosai National Park supporting the largest isolate. This decline might imply a reduction in genetic diversity, compromising the survival of the population. Using a combination of fecal DNA analysis and field data, our study aimed at assessing the size and genetic status of the Deosai population and give guidelines for its conservation and management. Using fecal genetic analysis, we estimated the population to be 40-50 bears, which compares well with the field census of 38 bears. The northern Pakistani brown bear population may have undergone an approximate 200-300-fold decrease during the last thousand years, probably due to glaciations and the influence of growing human population. However, in spite of the presence of a bottleneck genetic signature, the Deosai population has a moderate level of genetic diversity and is not at immediate risk of inbreeding depression. Gene flow might exist with adjacent populations. We recommend careful monitoring of this population in the future both with field observations and genetic analyses, including sampling of adjacent populations to assess incoming gene flow. The connectivity with adjacent populations in Pakistan and India will be of prime importance for the long-term survival of Deosai bears.  相似文献   
77.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   
78.
Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98 countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins, Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review the works conducted or being performed in this field. Key Words: Immune response, Leishmaniasis, Vaccination  相似文献   
79.
The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degradation in the rumen. The objectives of the current study were to determine the effect of inoculation of rumen fluid(RF) with three species of bacteria isolated from termite digestive tract, Bacillus licheniformis, Ochrobactrum intermedium, and Microbacterium paludicola, on in vitro gas production(IVGP), fermentation parameters, nutrient disappearance, microbial populations, and hydrolytic enzyme activities with fibrous wheat straw(WS) and date leaf(DL) as incubation substrate. Inoculation of RF with either of three termite bacteria increased(P0.05) ammonia-N concentration compared with the control group(free of termite gut bacteria). Termite bacteria inoculation had no effect(P0.05) on gas production characteristics, dry matter, organic matter and neutral detergent fiber disappearance, pH, and concentration and composition of volatile fatty acids. Population of proteolytic bacteria and protozoa, but not cellulolytic bacteria, were increased(P0.05) when RF was inoculated with termite bacteria with both WS and DL substrates. Inoculation of RF with termite bacteria increased protease activity, while activities of carboxymethyl-cellulase, microcrystalline-cellulase, α-amylase and filter paper degrading activity remained unchanged(P0.05). Overall, the results of this study indicated that transferring lignocellulose-degrading bacteria, isolated from digestive tract of termite, to rumen liquid increased protozoa and proteolytic bacteria population and consequently increased protease activity and ammonia-N concentration in vitro, however, no effect on fermentation and fiber degradation parameters were detected. These results suggest that the termite bacteria might be rapidly lysed by the rumen microbes before beneficial effects on the rumen fermentation process could occur.  相似文献   
80.
Paddy and Water Environment - Repairs of concrete irrigation channels in Japan are guided to a large extent by the degree to which their walls have degraded over decades of use. Current methods of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号