首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17133篇
  免费   53篇
林业   3657篇
农学   1310篇
基础科学   139篇
  2908篇
综合类   777篇
农作物   2157篇
水产渔业   1833篇
畜牧兽医   1349篇
园艺   1131篇
植物保护   1925篇
  2024年   3篇
  2023年   23篇
  2022年   27篇
  2021年   41篇
  2020年   33篇
  2019年   46篇
  2018年   2767篇
  2017年   2721篇
  2016年   1202篇
  2015年   95篇
  2014年   41篇
  2013年   46篇
  2012年   851篇
  2011年   2216篇
  2010年   2144篇
  2009年   1280篇
  2008年   1345篇
  2007年   1608篇
  2006年   59篇
  2005年   124篇
  2004年   125篇
  2003年   168篇
  2002年   73篇
  2001年   8篇
  2000年   42篇
  1999年   2篇
  1996年   5篇
  1995年   2篇
  1993年   12篇
  1992年   8篇
  1990年   6篇
  1989年   5篇
  1988年   12篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1977年   4篇
  1974年   2篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1968年   4篇
  1967年   2篇
  1963年   1篇
  1945年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Copper is an active component of some commercial algaecides and is commonly found in low concentrations in contaminated aquatic systems. Unintended consequences of algaecide application include macrophyte bioaccumulation and possible trophic level bioamplification especially by specialist herbivores. Trophic level effects of copper contamination were observed through feeding trials using the mustard beetle (Phaedon viridis). Several metals, including copper, interfere with the myrosinase enzyme system responsible for the watercress (Nasturtium officinale) allelopathic defense against herbivory. The mustard beetle is a specialist herbivore that has evolved a detection system that is stimulated by the products of the glucosinolate-myrosinase system. Because copper interferes with myrosinase enzymes, mustard beetles were expected to avoid copper-contaminated plants. While larvae exhibited a slight preference for contaminated plants, adult mustard beetles in this experiment exhibited a statistically significant preference for plants uncontaminated with copper.  相似文献   
942.
The present study aims to investigate the performance of potassium ferrate(VI) in treating decentralized domestic sewage from a rural scattered residential area. Major results were that around 90% of total phosphorus (TP) and 40% of chemical oxygen demand (COD) could be reduced when 25 mg L?1 of ferrate(VI) was applied. The removal of ammonia and total nitrogen (NH3–N and TN) was also monitored. However, the nitrogen removal during the chemical dosing was rather low. Big fluctuations of removal rates were observed against shock pollutants concentrations. Considering its strong ability in removing emerging organic pollutants and P, ferrate(VI) is competitive in the treatment of decentralized domestic sewage as an advanced treatment unit following some traditional treatment units.  相似文献   
943.
Manure application on frozen soil, which is a common practice in the upper Midwest of USA, results in degraded soil and water quality. During snowmelt or precipitation events, water runoff carries nutrients into nearby streams and impairs the water quality. There is a need, therefore, to identify improved management of manure application in the soils. This study was conducted to assess water quality impacts associated following manure application during winter months when soil is completely covered with snow. The study site included three watersheds, named south (SW), east (CW), and north (NW) managed with a corn (Zea mays L.)-soybean (Glycine max L.) rotation located in South Dakota. The SW and NW were used as treatment, and CW as the control watershed. The treatments included manure application on the upper half of the SW and lower half of the NW, and CW received no manure application. This study showed that manure improved soil properties including infiltration rate and organic matter. Nitrogen and phosphorus losses in the surface runoff were higher from NW compared to that of SW. The CW had similar nutrient losses compared to the NW with slight differences. It can be concluded that maintaining a setback distance can help in improving the environmental quality as well as managing the agricultural wastes during the winter months.  相似文献   
944.
A unique test chamber system, which enables experiments with plants under highly controlled environmental conditions, was used to examine the pollutant removal efficiency of plants. For this purpose, the removal of two different volatile organic compounds (VOC) (toluene, 2-ethylhexanol) from the air by aerial plant parts of two common indoor plant species (Dieffenbachia maculata and Spathiphyllum wallisii) was monitored. While the control over environmental conditions (temperature, relative humidity, CO2 content, and light condition) worked very well in all experiments, control experiments with the empty chamber revealed high losses of VOC, especially 2-ethylhexanol, over the test duration of 48 h. Nonetheless, compared to the empty chamber, a significantly stronger and more rapid decline in the toluene as well as in the 2-ethylhexanol concentrations was observed when plants were present in the chamber. Interestingly, almost the same VOC removal as by aerial plant parts could be achieved by potting soil without plants. A comparative literature survey revealed substantial heterogeneity in previous results concerning the VOC removal efficiency of plants. This can be mainly attributed to a high diversity in experimental setup. The experimental setup used in the current study offers an excellent opportunity to examine also plant physiological responses to pollutant exposure (or other stressors) under highly controlled conditions. For the analysis of VOC removal under typical indoor conditions, to obtain data for the assessment of realistic VOC removal efficiencies by plants in rooms and offices, a guideline would be helpful to achieve more coherent findings in this field of research.  相似文献   
945.
The objective of this research was to evaluate the biodegradation of chloroform by using biotrickling filter (BTF) and determining the dominant bacteria responsible for the degradation. The research was conducted in three phases under anaerobic condition, namely, in the presence of co-metabolite (phase I), in the presence of co-metabolite and surfactant (phase II), and in the presence of surfactant but no co-metabolite (phase III). The results showed that the presence of ethanol as a co-metabolite provided 49% removal efficiency. The equivalent elimination capacity (EC) was 0.13 g/(m3 h). The addition of Tomadol 25-7 as a surfactant in the nutrient solution increased the removal efficiency of chloroform to 64% with corresponding EC of 0.17 g/(m3 h). This research also investigated the overall microbial ecology of the BTF utilizing culture-independent gene sequencing alignment of the 16S rRNA allowing identification of isolated species. Taxonomical composition revealed the abundance of betaproteobacteria and deltaproteobacteria with species level of 97%. Azospira oryzae (formally dechlorosoma suillum), Azospira restrica, and Geobacter spp. together with other similar groups were the most valuable bacteria for the degradation of chloroform.  相似文献   
946.
The efficacy of two oxidant systems, iron-activated hydrogen peroxide (H2O2) and iron-activated hydrogen peroxide coupled with persulfate (S2O8 2?), was investigated for treatment of two chlorinated organic compounds, trichloroethene (TCE) and 1,2-dichloroethane (DCA). Batch tests were conducted at multiple temperatures (10–50 °C) to investigate degradation kinetics and reaction thermodynamics. The influence of an inorganic salt, dihydrogen phosphate ion (H2PO4 ?), on oxidative degradation was also examined. The degradation of TCE was promoted in both systems, with greater degradation observed for higher temperatures. The inhibition effect of H2PO4 ? on the degradation of TCE increased with increasing temperature for the iron-activated H2O2 system but decreased for the iron-activated hydrogen peroxide-persulfate system. DCA degradation was limited in the iron-activated hydrogen peroxide system. Conversely, significant DCA degradation (87% in 48 h at 20 °C) occurred in the iron-activated hydrogen peroxide-persulfate system, indicating the crucial role of sulfate radical (SO4 ??) from persulfate on the oxidative degradation of DCA. The activation energy values varied from 37.7 to 72.9 kJ/mol, depending on the different reactants. Overall, the binary hydrogen peroxide-persulfate oxidant system exhibited better performance than hydrogen peroxide alone for TCE and DCA degradation.  相似文献   
947.
In this study, in-house isolated laccase isoforms, i.e., Lac-I and Lac-II of the basidiomycete Pycnoporus sanguineus (CS43), were evaluated in relation to their Remazol Brilliant Blue R (RBBR) dye degradation capacity. A modified Dhouib medium additionally supplemented with 3% ethanol as a secondary inducer was used to propagate P. sanguineus CS43 for enhanced production of laccase under liquid state fermentation. The crude laccase extract was purified by passing through ion exchange diethylaminoethanol (DEAE)-Sepharose and gel filtration-based Sephadex G-200 column chromatography. The purified laccase fractions were subjected to the electrophoresis, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed two laccase isoforms Lac-I and Lac-II with 66 and 68 kDa, respectively. To explore the industrial applicability, for RBBR dye, degradation efficiencies ranged from 82 to 88% after 3 h of incubation for both; Lac-I and Lac-II at both concentrations were recorded. However, with 8 U/mL, the degradation ranged between 70 to 80% during the first 5 min of incubation. Enhanced degradation of RBBR dye was obtained in the presence of violuric acid and N-hydroxypthalamide as laccase mediators. Finally, using RBBR as a substrate kinetic characterization of both Lac-I and Lac-II isoforms was performed that revealed K m (0.243 and 0.117 mM for Lac-I and Lac-II) and V max (1.233 and 1.012 mM/Sec for Lac-I and Lac-II) values, respectively.  相似文献   
948.

Purpose

Sulfonamides are widely used for the prevention and treatment of bacterial infections, hard-degraded contaminants distributed in the environment if they are discharged into the soil and water. Biochar could probably influence the geochemical behavior of ionized antibiotics in the soils.

Materials and methods

To determine the sorption/desorption of three representative sulfonamides (SAs) in soils amended with biochar, we investigated the effects of water pH, Cu2+, and dissolved humic acid on the sorption of sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadiazine (SD) onto two different soil samples (S1 pH?=?5.13 and S2 pH?=?7.33) amended with wheat straw-derived biochar (size 0.5~0.6 mm).

Results and discussion

Batch experiments showed that the sorption/desorption isotherms of SAs on soil with/without biochar followed the Freundlich model. The biochar had a strong adsorption potential for SMX, SMZ, and SD both in S1 and S2 at low water pH. Except for SMX, the presence of Cu2+ inhibited the sorption of SMZ and SD through competing hydrophobic adsorption region in soils. HA suppressed the sorption of three sulfonamides in soil S2 by electrostatic repulsion under alkaline condition. The soil leaching column experiments showed the SA transport in soils, and S1 and S2 amended with biochar (0.5 and 1.0 wt%) brought about 12–20 % increase in SMX, SMZ, and SD retention compared to the untreated soil.

Conclusions

The results indicated that the presence of biochar effectively mitigated the mobility of ionized antibiotics such as SMX, SMZ, and SD in soils, which helps us reconsider the potential risk of antibiotics in the environment.
  相似文献   
949.

Purpose

Nutrient deficiency and salt stress (sodium, Na+) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity.

Materials and methods

The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils.

Results and discussion

The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved.

Conclusions

The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.
  相似文献   
950.

Purpose

Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete.

Materials and methods

Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0–10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 °C for 168 h with 80 % field water capacity).

Results and discussion

The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3 ?, NH4 +, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest.

Conclusions

These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号