首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
林业   9篇
农学   5篇
  31篇
综合类   5篇
农作物   6篇
水产渔业   2篇
畜牧兽医   27篇
植物保护   11篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   2篇
  2016年   8篇
  2015年   3篇
  2014年   3篇
  2013年   14篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   2篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有96条查询结果,搜索用时 62 毫秒
81.
Excess of exchangeable sodium (Na) in salt-affected soils causes ion toxicity and decrease in nutrient uptake by plants, particularly potassium (K). A number of studies have been conducted to investigate the effect of K-fertilization on plant growth under sodic and saline-sodic conditions but the results are much diverse to process for concrete recommendations. To explore the possible reasons, it was hypothesized that Na applied as NaCl to produce salinity/sodicity in the soil may release non-exchangeable K, minimizing the effect of K-fertilization. Incubation studies were conducted for 2, 4 and 6 days in the light (sandy loam) and heavy (clay loam) textured soils producing two saline/sodic levels, i.e. 20 and 30 sodium adsorption ratio (SAR) along with control (SAR 3). Potassium fertilizer applied was calculated according to 40 (general recommendations based on soil-nutrient status), 80 and 160 kg K ha?1. Interestingly, it was observed that addition of NaCl possibly released non-exchangeable K from the soil minerals and increased the K concentration in soil solution. Total K release was more in heavy textured soil but initial release was more in light textured soil. This release may eliminate the effect of K-fertilization applied under salt stress induced by NaCl. Therefore, it is suggested that while studying Na–K interaction in salt-affected soils, NaCl should be avoided to produce salinity, and naturally occurring saline-sodic soils may be used. Soil Na–K interaction studies including ameliorating effect of K under sodic or saline-sodic conditions should be conducted carefully considering the above-stated argument.  相似文献   
82.
Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs) including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.  相似文献   
83.
The information of soil compaction effects on growth and yield of crops for saline and waterlogged soils is scanty. A pot experiment was conducted on a sandy clay loam soil during 2001–2002 to study the interactive effects of soil compaction, salinity and waterlogging on grain yield and yield components of two wheat (Triticum aestivum) genotypes (Aqaab and MH-97). Compaction was achieved at 10% moisture level by dropping 5 kg weight, controlled by a tripod stand for 20 times from 0.6 m height on a wooden block placed inside the soil filled pots. Soil bulk density of non-compact and compact treatments was measured as 1.21 and 1.65 Mg m−3, respectively. The desired salinity level (15 dS m−1) was developed by mixing the required amount of NaCl in soil before filling the pots. Waterlogging was developed by flooding the pots for 21 days both at tillering and booting stages. Compaction aggravated the adverse effect of salinity on grain yield and different yield components of both the wheat genotypes. Average reduction in grain yield was 44% under non-compact saline conditions against 76% under compact saline conditions. Similarly, the reduction was about 20% more for 100 grain weight and shoot length, 30% more for number of spikelets per spike, 37% more for number of tillers per plant, and 32% more for straw weight in compact saline treatment than in non-compact saline treatment. Compaction alone caused a reduction of 36% in grain yield. The effect of waterlogging on grain yield and yield components was mostly not changed significantly due to compaction. Rather waterlogging mitigated the effect of compaction for most of the yield components except for number of spikes per plant. Therefore, as for normal soils, the cultivation of salt-affected soils should employ implements and techniques which minimize compaction of root zone soil. The effect of soil compaction can also be minimized by light irrigations with short intervals and by using a stress tolerant crop genotype.  相似文献   
84.
Soil salinization is a serious environmental problem worldwide. To explore the comparative effects of soil salinity and sodicity on physiological, biochemical and nutritional quality attributes of four quinoa genotypes (A1, A7, Puno, Vikinga), pot and field experiments were performed on non‐saline soil and two types of salt‐affected soils designated as SS1 (saline) and SS2 (saline‐sodic). The results of both the experiments showed similar reduction pattern in biomass (11%–44%), chlorophyll content (10%–36%), stomatal conductance (18%–32%) and grain yield (30%–47%) of four genotypes on SS2 compared with SS1. Higher sodicity level of SS2 resulted in more Na accumulation (23%–40%) and oxidative damage (12%–35% decrease in membrane stability) leading to an increase in the activities of antioxidant enzymes (SOD, POD, CAT) in all the genotypes. Grain mineral contents (except Na and Mg) were decreased more in SS2 than SS1. Multivariate analysis revealed that grain Na content has negative correlation with all the nutritional quality attributes except Mg and fibre contents. Genotypes A1 and A7 were more salt tolerant with better grain nutritional quality than Puno and Vikinga. It is concluded that soil sodicity is more detrimental than salinity, and quinoa genotypes A1 and A7 are better than Puno and Vikinga for cultivation on saline and saline‐sodic soils.  相似文献   
85.
Cadmium (Cd) pollution in agricultural soils has exerted a serious threat due to continuous application of pesticides, fertilizers, and wastewater irrigation. The present study aimed to test the efficiency of KOH-modified and non-modified rice straw-derived biochar (KBC and BC, respectively) for reducing Cd solubility and bioavailability in Cd-contaminated soil. Cadmium-contaminated soil was incubated for 60 d with 15 and 30 g kg-1 BC and KBC. At the end of incubation, Cd mobility was estimated by the European Community Bureau of Reference sequential extraction and toxicity characteristic leaching procedure (TCLP), while bioavailability was determined using 1 mol L-1 NH4NO3 extraction. The bioavailability risk index and bioaccessibility, assessed by a simple bioaccessibility extraction test, of Cd were used to examine the potential effects of Cd on living organisms. The results indicated that application of both KBC and BC significantly increased soil pH, cation exchange capacity, nutrients, and organic carbon. The soluble fraction of Cd was significantly decreased by 30.3% and 27.4%, respectively, with the addition of KBC and BC at 30 g kg-1 compared to the control (without biochar addition). Similarly, the bioaccessible Cd was significantly decreased by 32.4% and 25.2%, respectively, with the addition of KBC and BC at 30 g kg-1 compared to the control. In addition, both KBC and BC significantly reduced Cd leaching in the TCLP and NH4NO3-extractable Cd in the amended soil compared to the control. The reduction in Cd solubility and bioaccessibility by KBC and BC may be due to significant increases in soil pH and surface complexation. Overall, KBC at an application rate of 30 g kg-1 demonstrated positive results as soil amendment for Cd immobilization, and reduced bioaccessible Cd in contaminated soil.  相似文献   
86.
Dairy farming is vulnerable to global warming and climate change. Improving and maintaining conception rates (CRs) have a paramount importance for the profitability of any dairy enterprise. There is an antagonistic relationship between fertility and milk yield, and intensive selection for milk yield has severely deteriorated reproductive efficiency. Irrespective of geography and husbandry, modern dairy cows experience heat stress (HS) effects leading to fertility declines, but it worsens in tropical climates. The threshold of HS experience among modern dairy cow has lowered, leading to decreased thermal comfort zone. Studies show that this threshold is lower for fertility than for lactation. HS abatement and robustness response to lactation yield lead to negative energy balance, and cow's reproductive requirements remain unfulfilled. The adverse effects of HS commence from developing oocyte throughout later stages and its fertilization competence; the oestrus cycle and oestrus behaviour; the embryo development and implantation; on uterine environment; and even extend towards foetal calf. Even cows can become acyclic under the influence of HS. These harmful effects of HS arise due to hyperthermia, oxidative stress and physiological modifications in the body of dairy cows. Proper assessment of HS and efficient cooling of dairy animals irrespective of their stage of life at farm is the immediate strategy to reduce fertility declines. Other long- and short-term mitigation strategies to reduce fertility declines during HS include feeding care, reducing disease and mastitis rates, using semen from cooled bulls, timed artificial inseminations (AI), allied hormonal interventions and use of embryo transfer technology. Ultimate long-term solution should be well-planned breeding for fertility improvement and HS tolerance.  相似文献   
87.

Purpose  

To evaluate a 3% solution of household detergent viz., Surf Excel (Surf field mastitis test, SFMT) vis-à-vis California mastitis test (CMT), Whiteside test (WST), somatic cell counts (SCC; cut off limit = 5 × 105 cells per millilitre) and bacteriological cultures for the detection of subclinical mastitis in quarter foremilk samples (n = 800) of dairy cows and buffaloes.  相似文献   
88.
Modern nursery methods of seedling production in different sized root trainers, were compared by raising seedlings of Pinus wallichiana involving costs incurred and benefits received. In order to provide a common basis for the comparisons, the study involved the raising of 1000 seedlings annually on a continuous basis for seven years. A relative economic analysis of raising P. wallichiana seedlings in 300, 150 and 100 cm3 root trainers was carried out and we estimated that the root trainers of 300 cm3 capacity recorded the highest total input cost of Rs. 35571 and Rs. 40018 for 1000 seedlings produced annually at discount rates of 12% and 6%. Seedlings raised in 100 cm3 root trainers recorded the lowest total input cost of Rs. 23390 and Rs. 27737 per 1000 seedlings annually at discount rates of 12% and 6%. Hence, returns per rupee invested in raising seedlings in the 100 cm3 root trainers accounted for the maximum benefit-cost ratio (i.e., 1.56 and 1.61) at discount rates of 12% and 6%. Thus seedlings raised in 100 cm3 and 150 cm3 root trainers were found to be most cost effective when compared with seedlings grown in 300 cm3 root trainers. The results can be attributed to the larger number of cells per tray (higher growth density) in the 100 and 150 cm3 root trainers, compared to the number of seedlings in the 300 cm3 root trainers.  相似文献   
89.
A comparative randomized crossover study was conducted to determine the pharmacokinetics of theophylline in male and female camels (Camelus dromedarius) and goats (Caprus hircus). Theophylline is an established 'probe drug' to evaluate the drug metabolizing enzyme activity of animals. It was administered by the intravenous (i.v.) route and then intramuscularly (i.m.) at a dose of 2 mg/kg. The concentration of the drug in plasma was measured using a high-performance liquid chromatography (HPLC) technique on samples collected at frequent intervals after administration. Following i.v. injection, the overall elimination rate constant (lambda z,) in goats was 0.006 +/- 0.00076/min and in camels was 0.0046 +/- 0.0008/min (P < 0.01). The elimination half-life (t 1/2 lambda z) in goats (112 .7 min) was lower than in camels (154.7 min) (P < 0.01). The apparent volume of distribution (Vz) and the total body clearance (Cl) in goats were 1440.1 +/- 166.6 ml/kg and 8.9 +/- 1.4 ml/min/kg, respectively. The corresponding values in camels were 1720.3 +/- 345.3 ml/kg and 6.1 +/- 1.0 ml/min/kg, respectively. After i.m. administration, theophylline reached a peak plasma concentration (Cmax) of 1.8 +/- 0.1 and 1.7 +/- 0.2 microg/ml at a post-injection time (Tmax) of 67.5 +/- 8.6 and 122.3 +/- 6.7 min in goats and camels, respectively. The mean bioavailability (T) in both goats and camels was 0.9 +/- 0.2. The above data suggest that camels eliminate theophylline at a slower rate than goats.  相似文献   
90.
The sensitivity of crop genotypes determines the level of growth reduction by salinity. Effect of salinity levels (7.5 and 15 dihydrate m?1) using completely randomized design (CRD) with four replications per treatment were compared on germination, chlorophyll content, water potential, ionic sodium and potassium (Na+, K+) balance, and other growth-related parameters of six wheat genotypes for varietal differences under long-term salinity stress. Chlorophyll contents at flowering stage and yield aspects at maturity of all the wheat genotypes decreased with increasing salinity. The maximum Na+ concentration was observed at 7.5 and 15 dS m?1 in Bhakhar and Saher-2000, respectively, while minimum Na+ concentration was observed for 9476. However, the maximum K+ concentration and water potential was noticed in 9476 at 7.5 dS m?1. Careful selection of salt-tolerant genotypes for field crops is an important perspective especially in the developing countries facing salinity problem. Our results revealed that the wheat genotype 9476 performed best regarding growth and physiological parameters compared to other wheat genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号