首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
林业   22篇
  2篇
综合类   3篇
水产渔业   1篇
畜牧兽医   5篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2014年   1篇
  2010年   1篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1977年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
31.
In the past few decades, moso bamboo (Phyllostachys pubescens) forests in Japan have rapidly expanded, and moso bamboo is now invading nearby native forests. In this study, we assessed the effects of moso bamboo invasion on the soil microbial community and activity in warm temperate forests in western Japan. We sampled soil, measured soil microbial respiration, and used phospholipid fatty acid (PLFA) analysis to examine changes in microbial community composition. We found that the invasion of bamboo into the native secondary forest of Japan can cause changes to some soil properties. We also observed a significant difference in soil microbial community composition between the bamboo and native forests. The ratio of bacterial PLFA to fungal PLFA was significantly higher after bamboo invasion, while bacterial PLFA contents were significantly lower in the organic layer. Soil microbial respiration rates significantly decreased in the organic layer, and significantly increased in the mineral layer. Microbial respiration activity, as indicated by soil microbial respiration rates per total PLFA content, decreased in the organic layer but increased in the mineral layer after bamboo invasion. These results indicate that bamboo invasion significantly affects associated soil microbial communities and decomposition patterns of soil organic matter.  相似文献   
32.
33.
The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号