首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4925篇
  免费   183篇
  国内免费   3篇
林业   245篇
农学   202篇
基础科学   36篇
  770篇
综合类   1270篇
农作物   224篇
水产渔业   310篇
畜牧兽医   1548篇
园艺   114篇
植物保护   392篇
  2023年   22篇
  2022年   26篇
  2021年   63篇
  2020年   73篇
  2019年   94篇
  2018年   92篇
  2017年   85篇
  2016年   92篇
  2015年   65篇
  2014年   85篇
  2013年   187篇
  2012年   260篇
  2011年   339篇
  2010年   188篇
  2009年   145篇
  2008年   332篇
  2007年   339篇
  2006年   381篇
  2005年   324篇
  2004年   333篇
  2003年   306篇
  2002年   303篇
  2001年   60篇
  2000年   39篇
  1999年   53篇
  1998年   50篇
  1997年   28篇
  1996年   36篇
  1995年   36篇
  1994年   31篇
  1993年   36篇
  1992年   32篇
  1991年   31篇
  1990年   30篇
  1989年   37篇
  1988年   28篇
  1987年   32篇
  1986年   21篇
  1985年   29篇
  1984年   32篇
  1983年   25篇
  1982年   23篇
  1981年   30篇
  1980年   23篇
  1979年   15篇
  1978年   18篇
  1977年   19篇
  1976年   20篇
  1975年   16篇
  1974年   24篇
排序方式: 共有5111条查询结果,搜索用时 15 毫秒
61.
Eight endophytic fungal and bacterial isolates with antagonistic activity against Radopholus similis were evaluated in vivo for their individual and combined effects on biocontrol of R. similis and on the growth of “Grand Naine” cultivar banana plantlets in the greenhouse. Penetration efficiency (PE) of R. similis was between 3 and 21% in 29 biological agents (BAs) treatments, less than the 29% of the nematode-alone control (p ≤ 0.0001); 24 of the BAs treatments did not differ from the PE of 5% for a nematicide control. Twenty nine BAs treatments exhibited antagonistic activity against nematodes which reduced final population levels between 18 and 93%, relative to those on nematode-alone control plants (p ≤ 0.0001), and 14 BAs treatments were statistically similar to the nematicide treatment (88% reduction). Twenty four BAs treatments had increments of plant root biomass ranging from 20 to 58%, greater than the control plants; 37% of the treatments with single and combined BAs inoculations had root length increments ranging from 29 to 54% compared with control and chemical treatment. The nematicide, Terbufos 10GR, did not affect plant growth.  相似文献   
62.
Abstract.— A study was conducted to determine the effect of increasing density on growth and size distribution of paddlefish, Polyodon spathula, juveniles reared in ponds. Feed‐trained paddlefish of mean weight (±SE) 25.8 ± 1.1 g were randomly stocked into nine 0.02‐ha ponds at 12,355, 18,533, and 24,710 paddlefish/ha, three replications per treatment. The fish were fed daily in excess of what they would eat for 97 d, beginning with a floating trout diet containing 45% protein and 16% lipid and then transferring to a floating catfish diet containing 32% protein and 4.5% lipid. Survival at harvest was not significantly different (P > 0.05) among treatments and averaged 90%. Mean final weights (±SD) for the low‐, middle‐, and high‐density treatments were 205.2 ± 54.1, 174.8 ± 53.2, and 178.6 ± 51.4 g, respectively. Best‐fit distributions centered on these means were lognormal. The low‐density distribution was significantly different (P < 0.05) from the two higher densities, which were not significantly different from each other (P > 0.05). Paddlefish weight at the minimum target length of 35 cm was estimated to be 100 g by regression analysis. The probability of paddlefish reaching or exceeding 100 g was 90% for the low‐density treatment. For the two higher densities, probabilities were 79 and 78%, respectively. Mean Fulton’s condition factors (FCFs) (±SD) were 250 ± 19, 242 ± 4, and 256 ± 37 for the low‐, middle‐, and high‐density treatments, respectively. The FCF for the middle‐density treatment was significantly lower than for the low‐ and high‐density treatments (P < 0.05), which were not significantly different from each other (P > 0.05). CV, feed conversion ratio, and relative growth were not significantly different (P > 0.05) among treatments and averaged 0.43, 1.50, and 5.45, respectively. Monoculture of paddlefish juveniles in ponds results in a hierarchic size structure when density is at least greater than 12,355 paddlefish/ha. The effect is enhanced with increasing density but becomes asymptotic as density approaches 18,533 paddlefish/ha. Feeding in excess does not ameliorate the effect.  相似文献   
63.
The compostable biopolymer, poly(lactic) acid (PLA), is increasingly being used as an alternative to conventional plastics for short shelf-life products, disposable bags and packaging, and in agriculture. Despite the increase in the amount of PLA entering composting systems, few studies have examined the impact of PLA degradation on the compost microbial community. Thermophilic fungi play an import role in the composting process as they secrete hydrolytic enzymes capable of breaking down an array of complex natural polymers. In this study, the impact of PLA hydrolysis on the compost fungal community was examined by terminal restriction fragment length polymorphism and 454 sequencing. At 25°C, the effect of PLA on the surrounding compost community was relatively small and no physical changes were observed to the PLA films. However, when incubated at 50°C, where physical disintegration of PLA was occurring, a clear divergence between the compost populations in the presence and absence of PLA was evident after 2 months but became closer to the population in the absence of PLA after 4 months indicating that, after causing an initial perturbation after 2 months, the population began to return to that seen in the absence of PLA. The only exception was in the population containing 50% (w/w) PLA film, which remained divergent after 4 months and was associated with a marked acidification of the compost. Thus, 454-pyrosequencing revealed that the presence of PLA caused a strong selection for a Thermomyces sp. that was present only at low abundance in the absence of PLA.  相似文献   
64.
This article provides new data and synthesizes earlier findings on the carbon isotope ratios of the humin part of soil organic matter from a range of sites in the central Maya Lowlands. Changes down the soil profile in carbon isotope ratios can provide an important line of evidence for vegetation change and erosion over time, especially in well dated aggrading profiles. Research thus far has provided substantial evidence for significant inputs from C4 vegetation in buried layers from the Ancient Maya periods in depositional soils but equivocal evidence from sloping soils. We present new findings from soil profiles through ancient Maya wetland fields, upland karst wetlands, ancient Maya aguadas (reservoirs), and ancient Maya terraces. Most of the profiles exhibited δ13C enrichment greater than the 2.5–3‰ typical from bacterial fractionation. Seven of nine ancient Maya wetland profiles showed δ13C enrichment ranging from 4.25 to 8.56‰ in ancient Maya-dated sediments that also contained phytolith and pollen evidence of grass (C4 species) dominance. Upland karst sinks and ancient reservoirs produced more modest results for δ13C enrichment. These seasonal wetland profiles exhibited δ13C enrichment ranging from 1 to 7.3‰ from the surface to ancient Maya-period sediments. Agricultural terraces produced mixed results, with two terraces having substantial δ13C enrichment of 5.34 and 5.66‰ and two producing only equivocal results of 1.88 and 3.03‰ from modern topsoils to Maya Classic-period buried soils. Altogether, these findings indicate that C4 plants made up c. 25% of the vegetation at our sites in the Maya Classic period and only a few percent today. These findings advance the small corpus of studies from ancient terraces, karst sinks, and ancient wetland fields by demonstrating substantial δ13C and thus C4 plant enrichment in soil profile sections dated to ancient Maya times. These studies are also providing a new line of evidence about local and regional soil and ecological change in this region of widespread environmental change in the Late Holocene.  相似文献   
65.
Abstract. The in-field calibration of a dielectric probe to measure soil water content is described. The probe uses an access tube analogous to that of the neutron probe. The dielectric constant was measured at soil depths of 10, 20, 30, 40, 60 and 100 cm. Cores of soil were then taken from the face of pits dug 30 cm from the access tube and their soil water contents determined by oven drying. The dielectric constant values measured by the probe were calibrated against water contents from these cores. We found that sensor depth needed to be included to achieve a good calibration model that explained 72% of the variance. It is argued that depth needs to be included because of artefacts introduced during the installation of the access tube.  相似文献   
66.
Soil enzymes are linked to microbial functions and nutrient cycling in forest ecosystems and are considered sensitive to soil disturbances. We investigated the effects of severe soil compaction and whole-tree harvesting plus forest floor removal (referred to as FFR below, compared with stem-only harvesting) on available N, microbial biomass C (MBC), microbial biomass N (MBN), and microbial biomass P (MBP), and dehydrogenase, protease, and phosphatase activities in the forest floor and 0–10 cm mineral soil in a boreal aspen (Populus tremuloides Michx.) forest soil near Dawson Creek, British Columbia, Canada. In the forest floor, no soil compaction effects were observed for any of the soil microbial or enzyme activity parameters measured. In the mineral soil, compaction reduced available N, MBP, and acid phosphatase by 53, 47, and 48%, respectively, when forest floor was intact, and protease and alkaline phosphatase activities by 28 and 27%, respectively, regardless of FFR. Forest floor removal reduced available P, MBC, MBN, and protease and alkaline phosphatase activities by 38, 46, 49, 25, and 45%, respectively, regardless of soil compaction, and available N, MBP, and acid phosphatase activity by 52, 50, and 39%, respectively, in the noncompacted soil. Neither soil compaction nor FFR affected dehydrogenase activities. Reductions in microbial biomass and protease and phosphatase activities after compaction and FFR likely led to the reduced N and P availabilities in the soil. Our results indicate that microbial biomass and enzyme activities were sensitive to soil compaction and FFR and that such disturbances had negative consequences for forest soil N and P cycling and fertility.  相似文献   
67.
Manufactured soil for landscaping purposes was produced by composting for 6 weeks (1) municipal green waste alone, (2) green waste amended with 25% v/v poultry manure, or (3) green waste immersed in, and then removed from, a mixture of liquid grease trap waste/septage. Composting temperatures increased most rapidly and reached highest values (78oC) in the grease trap/septage-amended green waste. In comparison with green waste alone, addition of poultry manure prolonged the period of elevated temperatures and increased the maximum temperature attained from 52oC to 61oC. Following composting, each of the materials was split into (1) 100% compost, (2) 80% compost plus 20% v/v soil, and (3) 70% compost plus 20% soil plus 10% coal fly ash. Addition of poultry manure or grease trap/septage to green waste prior to composting increased bulk density and reduced total porosity of the composted product. Addition of soil, or soil and ash, to composts increased bulk density, reduced total porosity, decreased percentage macropores, and increased percentage mesopores and available water-holding capacity. Bicarbonate-extractable P, exchangeable NH4+ and NO3, electrical conductivity (EC), soluble C, soluble C as a percentage of organic C, basal respiration, and metabolic quotient were all markedly greater in the grease trap/septage-amended than poultry manure-amended or green waste alone treatments. Values for extractable P and EC were considered large enough to be damaging to plant growth and germination index (GI) of watercress was less than 60% for all grease trap/septage composts. Extractable P and EC were also high, and GI was <100%, in the green waste alone and poultry manure-amended green waste alone treatments. Addition of soil or soil and ash to these composts resulted in GI values >100%.  相似文献   
68.
In many disaster settings, top‐down responses emphasise ‘expert‐led’ solutions that often involve relocating disaster‐affected communities. While the intention might be to move people from harm's way and facilitate recovery, failure to attend to local pre‐disaster circumstances as well as the interplay between power, resilience and vulnerability within and around affected communities often sees resettlement reconfigure as displacement or disconnection. This oversight may even usher in a new phase of dispossession and disadvantage for marginalised groups (particularly in colonial settings). This paper explores experiences in Australia, Japan and Taiwan to reflect on what issues of local sociality, local culture and local resilience need to be attended to in framing ‘better’ disaster responses.  相似文献   
69.
70.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号