首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   9篇
  国内免费   3篇
林业   30篇
农学   17篇
基础科学   3篇
  193篇
综合类   35篇
农作物   16篇
水产渔业   13篇
畜牧兽医   21篇
园艺   6篇
植物保护   18篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   13篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   6篇
  2014年   9篇
  2013年   34篇
  2012年   4篇
  2011年   8篇
  2010年   11篇
  2009年   9篇
  2008年   26篇
  2007年   9篇
  2006年   6篇
  2005年   17篇
  2004年   5篇
  2003年   11篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有352条查询结果,搜索用时 203 毫秒
31.
Lal R 《Science (New York, N.Y.)》1987,236(4805):1069-1076
Many constraints to intensive food-crop production in tropical Africa are related to tropical soils. Improved technologies are available for different ecological regions. Important technological innovations include manual land clearing, mulch farming, conservation tillage and tiedridges, agroforestry, cover crops, mixed- and relay-cropping, and early sowing for improved and sustained productivity. Irrigation, animal traction or draft animals, and the use of chemical fertilizers are also important. Much of the agrarian stagnation in Africa is caused by neglect and misuse of the most basic of all resources, the soil. In fact, the root cause of the perpetual famine can be traced to the misuse of soil and water resources and issues related to their misuse. Substantial increases in food production are possible if the proven technologies can be effectively transferred and implemented. Priorities lie in both short-term development projects and in initiating long-term research to understand soil and water resources and how to manage them. The agrarian research must address the issue of improving the welfare of resource-poor farmers.  相似文献   
32.
33.
Phase chemistry, structure, and radiation effects were studied in rock, breccia, and soil samples. The regolith apparently developed in the final stages of accretion and was modified by later impact processes and radiation weathering. Exposure ages indicate transfer of buried igneous rock fragments to the near surface late in lunar history. With a few exceptions igneous rock fragments, soil, and breccia share the same distinctive chemistry, probably acquired before accretion of the moon. The igneous rocks texturally resemble basaltic achondrites, and the soil and breccias contain glassy spheres analogous to chondrules.  相似文献   
34.
The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [>/=1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.  相似文献   
35.
36.
Soil carbon sequestration impacts on global climate change and food security   总被引:69,自引:0,他引:69  
Lal R 《Science (New York, N.Y.)》2004,304(5677):1623-1627
The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.  相似文献   
37.
Methane (CH4) oxidation potential of soils decreases with cultivation, but limited information is available regarding the restoration of that capacity with implementation of reduced tillage practices. A study was conducted to assess the impact of tillage intensity on CH4 oxidation and several C-cycling indices including total and active microbial biomass C (t-MBC, a-MBC), mineralizable C (Cmin) and N (Nmin), and aggregate-protected C. Intact cores and disturbed soil samples (0–5 and 5–15 cm) were collected from a corn (Zea mays L.)–soybean (Glycine max L. Merr.) rotation under moldboard-plow (MP), chisel-plow (CP) and no-till (NT) for 8 years. An adjacent pasture (<25 years) and secondary growth forest (>60 years) soils were also sampled as references. At all sites, soil was a Kokomo silty clay loam (mesic Typic Argiaquolls). Significant tillage effects on t-MBC and protected C were found in the 0–5 cm depth. Protected C, a measure of C retained within macro-aggregates and defined as the difference in Cmin (CO2 evolved in a 56 days incubation) between intact and sieved (<2 mm) soil samples, amounted to 516, 162 and 121 mg C kg−1 soil in the 0–5 cm layer of the forest, pasture and NT soils, respectively. Protected C was negligible in the CP and MP soils. Methane uptake rate (μg CH4-C kg−1 soil per day, under ambient CH4) was higher in forest (2.70) than in pasture (1.22) and cropland (0.61) soils. No significant tillage effect on CH4 oxidation rate was detected (MP: 0.82; CP: 0.41; NT: 0.61). These results underscore the slow recovery of the CH4 uptake capacity of soils and suggest that, to have an impact, tillage reduction may need to be implemented for several decades.  相似文献   
38.
39.
We studied the dynamics of microbial C, N, and P in soil cropped with rice (Oryza sativa) and lentils (Lens culinaris) in a dryland farming system. The crop biomass and grain yield were also studied. The microbial biomass and its N and P contents were larger under the lentil than under the rice crop. Microbial nutrients decreased as the crops grew and then increased again. Farmyard manure and NPK fertilizer applications increased the level of microbial nutrients, crop biomass, and grain yield by 35–80%, 55–85%, and 74–86%, respectively. However, these applications had no significant effect on most of the soil physicochemical properties in the short term. The microbial biomass was correlated with the crop biomass and grain yield. The calculated flux of N and P through the microbial biomass ranged from 30–45 and 10–19 kg ha-1 year-1, respectively. Cultivation of a cereal crop followed by a leguminous crop sustains higher levels of microbial nutrients and hence greater fertility in impoverished tropical arable soils. The soil microbial biomass appears to contribute significantly to crop productivity by releasing nutrients, and applications of manure, either alone or with fertilizers, promote this effect more strongly than the application of NPK fertilizers alone.  相似文献   
40.
A ciliate protozoan, Tetrahymenapyriformis was exposed to three insecticides, dieldrin, dimethoate, and permethrin for 12 hr to study the uptake and bioconcentration potential. Ciliates concentrated 922, 3547, and 1056 gg g?1 dry wt. over an initial concentration of 1 gg mL?1 of dieldrin, dimethoate, and permethrin, respectively. The highest bioconcentration factor for three insecticides was 2095, 3547, and 1110, respectively. It is suggested that if levels in the environment reach 1 gg mL?1 the chief effects would be reduction of cell population, and accumulation of the toxicants by ciliates. Accumulation of insecticides by ciliates would permit the toxicants to enter aquatic food chains. Thus the compounds could exert toxic effects at higher trophic levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号