首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   9篇
  国内免费   3篇
林业   30篇
农学   17篇
基础科学   3篇
  193篇
综合类   35篇
农作物   16篇
水产渔业   13篇
畜牧兽医   21篇
园艺   6篇
植物保护   18篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   13篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   6篇
  2014年   9篇
  2013年   34篇
  2012年   4篇
  2011年   8篇
  2010年   11篇
  2009年   9篇
  2008年   26篇
  2007年   9篇
  2006年   6篇
  2005年   17篇
  2004年   5篇
  2003年   11篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有352条查询结果,搜索用时 18 毫秒
131.
Tropical Animal Health and Production - Mutation studies in different prolific sheep breeds have shown that the transforming growth factor beta super family ligands viz. the growth differentiation...  相似文献   
132.
Phytosociological parameters, soil and temperature conditions, importance values of species, life form, leaf size, and biomass were investigated at the village Tabai during autumn 2006. There was very little difference in air and soil temperature due to similar elevation. There was a great difference in biomass production for various stands. The original vegetation structure has been altered due to deforestation and overgrazing. There is a need for restoration of the habitat.  相似文献   
133.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
134.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool.  相似文献   
135.
The knowledge about the relevance of physical and chemical fractionation methods to soil organic carbon (SOC) stabilization mechanisms is fragmentary but needed to manage the SOC pool. Therefore, our objective was to compare the C contents of the particle size fractions coarse and fine sand, silt, and clay of the two uppermost horizons of a soil under three different management systems (meadow; no-till corn, NT; no-till corn with manure, NTm). The mineral composition was dominated by silt (48–60%). However, coarse sand and clay showed the highest enrichment of C compared to the bulk soil. In spite of an enrichment factor below 1, the high proportion of silt made this fraction the main C store. In the upper 30 cm, this fraction amounted to 27.1 Mg C ha−1 in NTm and progressively less in NT (15.5 Mg C ha−1), and meadow (14.9 Mg C ha−1), representing 44%, 39%, and 39% of the total SOC pool, respectively. The C in the isolated particle size fractions was further investigated by an oxidizing treatment with Na2S2O8 and a treatment with HF to solubilize the mineral phases. The pools of oxidizable C were comparable among particle size fractions and pedons, as indicated by Na2S2O8 treatment. The pools of C preferentially associated with soil minerals were also comparable among pedons, as indicated by HF treatment. However, NTm stored the largest pool (12.6 Mg ha−1) of mineral-associated C in 0–30 cm depth. The silt-associated and mineral-bound SOC pool in NTm was greater compared to NT due to increased organic matter (OM) input. Thus, the silt particle size fraction at the North Appalachian Experimental Watershed (NAEW) has the potential for SOC sequestration by stabilizing OM inputs. Mineralogical and molecular level analyses on a larger set of fractions obtained from entire rooted soil profiles are required, however, to compare the SOC sequestration capacity of the land uses.  相似文献   
136.
Long-term experimental sites are expected to provide important information regarding soil properties as affected by management practices. This study was designed to examine the effects of continuous fertilization, and manuring on the activities of enzymes involved in mineralization of C, N, and P on a long term (33 years) field trial under sub-temperate conditions in India. Treatments at the site included application of recommended doses of nitrogen and phosphorus (NP), nitrogen and potassium (NK), nitrogen, phosphorus and potassium (NPK), farmyard manure (FYM) with N (N + FYM), FYM with NPK (NPK + FYM) and un-amended control (C). The study was done under rainfed soybean–wheat rotation. Manure application increased soil carbohydrate, dehydrogenase, acid and alkaline phosphatases, cellulase, and protease activity significantly. Urease activity was not influenced by the manure treatment and the activity was highest in controls. Both acid and alkaline phosphatase activities were negatively influenced by chemical fertilizer treatment. Almost all the enzymes studied were significantly correlated with soil C content. The results suggest that application of FYM directly or indirectly influences the enzyme activity and it in turn regulates nutrient transformation.  相似文献   
137.
Problems of frequent drought stress, low soil organic carbon (SOC) concentration, low aggregation, susceptibility to compaction, salinization and accelerated soil erosion in dry regions are accentuated by removal of crop residues, mechanical methods of seedbed preparation, summer clean fallowing and overgrazing, and excessive irrigation. The attendant soil degradation and desertification lead to depletion of SOC, decline in biomass production, eutrophication/pollution of waters and emission of greenhouse gases. Adoption of conservation agriculture, based on the use of crop residue mulch and no till farming, can conserve water, reduce soil erosion, improve soil structure, enhance SOC concentration, and reduce the rate of enrichment of atmospheric CO2. The rate of SOC sequestration with conversion to conservation agriculture, elimination of summer fallowing and growing forages/cover crops may be 100 to 200 kg ha−1 y−1 in coarse‐textured soils of semiarid regions and 150 to 300 kg ha−1 y−1 in heavy‐textured soils of the subhumid regions. The potential of soil C sequestration in central Asia is 10 to 22 Tg C y−1 (16±8 Tg C y−1) for about 50 years, and it represents 20 per cent of the CO2 emissions by fossil fuel combustion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
138.
The West Asia–North Africa (WANA) region has a land area of 1.7 billion ha, and a population of 600 million. Desertification and soil degradation are severe problems in the region. The problem of drought stress is exacerbated by low and erratic rainfall and soils of limited available water holding capacity and soil organic carbon (SOC) content of less than 0.5 per cent. The SOC pool of most soils has been depleted by soil degradation and widespread use of subsistence and exploitative farming systems. The historic loss of a SOC pool for the soils of the WANA region may be 6–12 Pg compared with the global loss of 66–90 Pg. Assuming that 60 per cent of the historic loss can be resequestered, the total soil‐C sink capacity of the WANA region may be 3–7 Pg. This potential may be realized through adoption of measures to control desertification, restore degraded soils and ecosystems, and improve soil and crop management techniques that can enhance the SOC pool and improve soil quality. The strategies of soil‐C sequestration include integrated nutrient management (INM) and recycling, controlled grazing, and growing improved fodder species on rangeland. Improved technologies for cropland include use of INM and biofertilizers, appropriate tillage methods and residue management techniques, crop rotations and cover crops, and water and nutrient recycling technologies. Through adoption of such measures, the potential of soil‐C sequestration in the WANA region is 0.2–0.4 Pg C yr−1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号