首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   19篇
林业   44篇
农学   3篇
基础科学   1篇
  245篇
综合类   31篇
农作物   15篇
水产渔业   11篇
畜牧兽医   35篇
园艺   6篇
植物保护   31篇
  2023年   5篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   2篇
  2017年   8篇
  2016年   12篇
  2015年   13篇
  2014年   13篇
  2013年   17篇
  2012年   22篇
  2011年   23篇
  2010年   19篇
  2009年   29篇
  2008年   41篇
  2007年   32篇
  2006年   25篇
  2005年   16篇
  2004年   21篇
  2003年   19篇
  2002年   14篇
  2001年   10篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1983年   3篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1967年   1篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
401.
Amino sugars are important indices for the contribution of soil microorganisms to soil organic matter. Consequently, the past decade has seen a great increase in the number of studies measuring amino sugars. However, some uncertainties remain in the interpretation of amino sugar data. The objective of the current opinion paper is to summarize current knowledge on amino sugars in soils, to give some advice for future research objectives, and to make a plea for the correct use of information. The study gives an overview on the origin of muramic acid (MurN), glucosamine (GlcN), galactosamine (GalN), and mannosamine (ManN). Information is also provided on measuring total amino sugars in soil but also on compound-specific δ13C and δ15N determination. Special attention is given to the turnover of microbial cell-wall residues, to the interpretation of the GlcN/GalN ratio, and to the reasons for converting fungal GlcN and MurN to microbial residue C. There is no evidence to suggest that the turnover of fungal residues generally differs from that of bacterial residues. On average, MurN contributes 7% to total amino sugars in soil, GlcN 60%, GalN 30%, and ManN 4%. MurN is highly specific for bacteria, GlcN for fungi if corrected for the contribution of bacterial GlcN, whereas GalN and ManN are unspecific microbial markers.  相似文献   
402.
Perfusion of 14C-(ring)-parathion or 14C-(ring)-paraoxon with blood through isolated, intact rat livers resulted in the rapid degradation of these insecticides. Degradation was negligible in the absence of rat liver (controls), thus demonstrating the capacity of the liver per se to effectively degrade these compounds. Of the total radiocarbon recovered after liver perfusion with [14C]parathion, 33 % could be attributed to unchanged [14C]parathion (similarly distributed between the liver and the blood) while 67.9 % was degraded to water soluble compounds and 2.5% was converted to organic soluble paraoxon and traces of p-nitrophenol. Nearly all of the [14C]paraoxon, however, was degraded by the intact rat liver, resulting in water soluble products that amounted to 98.5% of the total radiocarbon recovered. Unexplained losses of radiocarbon with the perfusion apparatus used were lower in the presence of rat liver which degraded the insecticides to more water soluble compounds. The water soluble degradation products produced from [14C]parathion and [14C]paraoxon were non-toxic to mosquito larvae (Aedes aegypti L.). These ring-labelled products were found to be conjugated p-nito-phenol. Nearly all of the water soluble radiocarbon was located in the perfused blood, while only small amounts (1.8 to 3.0% of recovered) were excreted via the bile or were associated with the liver tissue (1.3 to 1.8 % of recovered).  相似文献   
403.
Soil aeration is a critical factor for oxygen-limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X-ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.  相似文献   
404.
405.
Oxygen (O2) supply and the related redox potential (EH) are important parameters for interactions between roots and microorganisms in the rhizosphere. Rhizosphere extension in terms of the spatial distribution of O2 concentration and EH is poorly documented under aerobic soil conditions. We investigated how far O2 consumption of roots and microorganisms in the rhizosphere is replenished by O2 diffusion as a function of water/air‐filled porosity. Oxygen concentration and EH in the rhizosphere were monitored at a mm‐scale by means of electroreductive Clark‐type sensors and miniaturized EH electrodes under various matric potential ranges. Respiratory activity of roots and microorganisms was calculated from O2 profiles and diffusion coefficients. pH profiles were determined in thin soil layers sliced near the root surface. Gradients of O2 concentration and the extent of anoxic zones depended on the respiratory activity near the root surface. Matric potential, reflecting air‐filled porosity, was found to be the most important factor affecting O2 transport in the rhizosphere. Under water‐saturated conditions and near field capacity up to –200 hPa, O2 transport was limited, causing a decline in oxygen partial pressures (pO2) to values between 0 and 3 kPa at the root surface. Aerobic respiration increased by a factor of 100 when comparing the saturated with the driest status. At an air‐filled porosity of 9% to 12%, diffusion of O2 increased considerably. This was confirmed by EH around 300 mV under aerated conditions, while EH decreased to 100 mV on the root surface under near water‐saturated conditions. Gradients of pO2 and pH from the root surface indicated an extent of the rhizosphere effect of 10–20 mm. In contrast, EH gradients were observed from 0 to 2 mm from the root surface. We conclude that the rhizosphere extent differs for various parameters (pH, Eh, pO2) and is strongly dependent on soil moisture.  相似文献   
406.
Given high mineralization rates of soil organic matter addition of organic fertilizers such as compost and manure is a particularly important component of soil fertility management under irrigated subtropical conditions as in Oman. However, such applications are often accompanied by high leaching and volatilization losses of N. Two experiments were therefore conducted to quantify the effects of additions of activated charcoal and tannin either to compost in the field or directly to the soil. In the compost experiment, activated charcoal and tannins were added to compost made from goat manure and plant material at a rate of either 0.5 t activated charcoal ha?1, 0.8 t tannin extract ha?1, or 0.6 t activated charcoal and tannin ha?1 in a mixed application. Subsequently, emissions of CO2, N2O, and NH3 volatilization were determined for 69 d of composting. The results were verified in a 20‐d soil incubation experiment in which C and N emissions from a soil amended with goat manure (equivalent to 135 kg N ha?1) and additional amendments of either 3 t activated charcoal ha?1, or 2 t tannin extract ha?1, or the sum of both additives were determined. While activated charcoal failed to affect the measured parameters, both experiments showed that peaks of gaseous CO2 and N emission were reduced and/or occurred at different times when tannin was applied to compost and soil. Application of tannins to compost reduced cumulative gaseous C emissions by 40% and of N by 36% compared with the non‐amended compost. Tannins applied directly to the soil reduced emission of N2O by 17% and volatilization of NH3 by 51% compared to the control. However, emissions of all gases increased in compost amended with activated charcoal, and the organic C concentration of the activated charcoal amended soil increased significantly compared to the control. Based on these results, tannins appear to be a promising amendment to reduce gaseous emissions from composts, particularly under subtropical conditions.  相似文献   
407.
Summary The identification and distribution of 17 mono- and sesquiterpenes in an F2 population produced from selfing of an interspecific F1 hybrid is presented. A mode of inheritance for most of these components is attempted, percentages of leaf oil components and a correlation matrix are given.  相似文献   
408.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   
409.
We determined the impact of different fertilization, namely organic vs. mineral fertilization, on the mesoscale parameter cyclic compressibility as well as on rheology of soil samples as a microscale parameter and how these parameters are related. Therefore, undisturbed samples were taken from a long‐term fertilization trial at the Dikop farm near Bonn (Germany) and tested for their mechanical and hydraulic properties. This paper examines the sensitivity of the soil towards cyclic loading (mesoscale) and oscillatory shearing at the microscale by means of an amplitude sweep test and the resulting parameter maximum shear stress. Fertilization increased cyclic compressibility and thus revealed structural weakness of fertilized soil samples, so did shear stress at the microscale. The main reason for this was a decrease in bulk density in the wake of fertilization. However, within the range of fertilized soil samples, the soil structure became less susceptible towards cyclic loading and oscillatory shearing, respectively, the more organic matter the soil contained (equivalent to the fertilization level). This was assumedly caused by enhanced cementation due to organic substances that could partly substitute the direct grain–grain contacts generally contributing to soil strength. The similar behavior of cyclic compressibility and maximum shear stress enabled a first approach to relate soil mechanical parameters at the microscale to those at the mesoscale.  相似文献   
410.
The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号