首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
林业   5篇
农学   3篇
基础科学   1篇
  18篇
综合类   1篇
农作物   2篇
水产渔业   4篇
畜牧兽医   2篇
植物保护   3篇
  2023年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   11篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
11.
A pot experiment was undertaken under net house conditions, with three rhizobacterial strains AW1 (Bacillus sp.), AW5 (Providencia sp.) and AW7 (Brevundimonas sp.), applied along with 2/3 recommended dose of nitrogen (N) and full dose of phosphorus (P) and potassium (K) fertilizers (N90P60K60). An enhancement of 14–34% in plant biometric parameters and 28–60% in micronutrient content was recorded in treatments receiving the combination of AW1?+?AW5 strains, as compared to full dose of fertilizer application. The treatment involving inoculation with AW5?+?AW7 recorded highest values of % P and N, with a two-fold enhancement in phosphorus and 66.7% increase in N content, over full dose application of P and K fertilizers. A significant correlation was recorded between plant biomass, panicle weight, grain weight, N, P and iron (Fe) with acetylene reduction activity, indicating the significance of N fixation in overall crop productivity. Our study illustrates the multiple benefits of plant growth promoting rhizobacteria (PGPR) inoculation in integrated nutrient management and biofortification strategies for wheat crop.  相似文献   
12.
Over 5 days, Brassica juncea removed 54% of the highly toxic insecticide phorate from the medium with the formation of phorate sulfoxide in small quantity. The loss of phorate from the medium followed first-order kinetics. The half-life of phorate disappearance from water decreased by ~4.5-fold in the presence of B. juncea. Mild phorate phytotoxicity was evident from the elevated activities of the antioxidative enzymes like glutathione-disulfide reductase, glutathione S-transferase, superoxide dismutase, and catalase in the plants. Nevertheless, the ubiquitous antioxidative peroxidase was not significantly increased, nor the total glutathione content, due to phorate exposure. Phosphotriester bond hydrolysis and glutathione S-transferase-mediated conjugation seemed to be the key reactions for phorate metabolism by B. juncea. From the limited information available, for the first time, a tentative mapping of phytotransformation pathways was performed.  相似文献   
13.
14.
15.
Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) was investigated. Key parameters governing the TiO2NP?CGAC interaction such as specific surface area (SSA), zeta potential, and the TiO2NP particle size distribution (PSD) were determined. The impact of TiO2NPs on TCE adsorption on GAC was tested by conducting TCE adsorption isotherm, kinetic, and column breakthrough studies in the presence and absence of TiO2NPs. SSA and pore size distribution of the virgin and spent GAC were obtained. The fate and transport of the TiO2NPs in the GAC fixed bed and their impact on TCE adsorption were found to be a function of their zeta potential, concentration, PSD, and the nature of their aggregation. The TiO2NPs under investigation are not stable in water and rapidly form larger aggregates. Due to the fast adsorption kinetics of TCE, the isotherm and kinetic studies found no effect from TiO2NPs. However, TiO2NPs attached to GAC and led to a reduction in the amount of TCE adsorbed during the breakthrough experiments suggesting a preloading pore blockage phenomenon. The analysis of the used GAC confirmed the pore blockage and SSA reduction.  相似文献   
16.
Nitrogen fixing potential in terms of acetylene reducing activity (ARA) and biomass accumulation (in terms of chlorophyll) were investigated using surface and below-surface soil cores, collected from rice fields 45 and 90 days after transplanting (DAT). Treatments included different levels of urea (30, 60, 90 and 120 kg N ha–1) in combination with inoculation using blue green algae (BGA) and Azolla biofertilizers. Application of biofertilizers brought about a significant enhancement in chlorophyll accumulation and nitrogenase activity, when measured 45 DAT. Positive effects in below-surface soil cores, on both these parameters as a result of application of biofertilizers further emphasized their contribution to the N economy of rice fields. Plots treated with 30 and 60 kg N ha–1 along with biofertilizers exhibited the highest percentage increase in terms of algal biomass and ARA, both in surface and below-surface soil cores at 45 DAT. A definite need to examine critically the nature and metabolic activities of below-surface microflora is highlighted through our investigation.  相似文献   
17.
ABSTRACT

A field evaluation of the stable isotopes (δ13C and δ15N) and their relationship among physicochemical and enzyme activities was conducted in Indian semi-arid agricultural soils. Composite soil samples were collected based on organic management (ORG), inorganic management (IM), integrated crop management (ICM) and precision farming (PF) experimental plots from the fall of September 2017 to October 2018. δ15N was significantly higher (13.85 %) in ORG soils compared with ICM (13.28 %), IM (12.84 %) and PF (12.75 %). In contrast δ13C was higher (?13.25%) in PF soils than IM (?13.6 %), ICM (?15.07 %) and ORG (?15.23 %). Soils from ORG had significantly higher levels of total N, total C, total S, organic carbon, available N, extractable P, Soil organic carbon stock, exchangeable K and enzyme activities compared to IM, ICM and PF. Urease, β – glucosidase, acid phosphatase, alkaline phosphatase, invertase, cellulase and dehydrogenase activities significantly increased the δ15N and reduced δ13C in agricultural soils. Our results suggested that organic management had improved the δ15N, plant available nutrients and soil enzyme activities. Stable δ13C and δ15N isotopes are good indicators of monitor the soil health, carbon, and nitrogen biogeochemical cycles in Indian semi-arid agricultural soils.  相似文献   
18.
A pot culture experiment was undertaken under controlled conditions in the National Phytotron Facility to investigate the interactive effect of microbial inoculants—blue-green algae (BGA), Azospirillum, phosphate-solubilizing bacterium (PSB) Pseudomonas striata, vesicular-arbuscular mycorrhizal fungus (VAMF), and Azolla, individually and in combination with chemical fertilizers and/rock phosphate on the wetland rice (Oryza sativa L.) cultivar ‘PNR 381’. The microbial inoculants—BGA, PSB, VAMF, and Azospirillum—positively interacted with one another, resulting in significant improvement in yield and nutritional parameters. Application of biofertilizers also substantially improved soil (peat) fertility status by increasing the nitrogen (N), phosphorous (P), and organic carbon content. The biofertilizer combination BGA + PSB + VAMF + Azospirillum was best for improved growth and yield traits, nutritional status of rice, and sustained soil (peat) fertility. Azolla, which is a highly competitive organism, suppressed the growth of the other four inoculants. The inclusion of VAMF and PSB was observed to significantly improve the zinc nutrition of the paddy and the P utilization of the applied rock phosphate. A basal dose of nitrogenous fertilizer was essential for deriving maximum benefits from applied inoculants, thereby underlying the supplementary/complementary role of biofertilizers in efficient nutrient management in agriculture.  相似文献   
19.
Static-renewal bioassays [Methods for acute toxicity tests with fish, macro-invertebrates and amphibians: USEPA, ERS, EPA 660/3 75-009 (1975)] were carried out on Esomus danricus exposed to sub-lethal (0.55 mg/l) and lethal (5.5 mg/l) concentrations of copper. The 96-h median lethal concentration (LC50) was 5.5 mg/l. Biochemical stress responses, such as visceral superoxide dismutase (SOD) and catalase (CAT) activities, were measured during this 96-h period. Malondialdehyde, a product of lipid peroxidation, was present at elevated levels in the visceral tissue of copper-exposed fish. Copper was found to be highly toxic to the fish and induced significant declines (p < 0.05–0.001) in all of the biochemical profiles studied, demonstrating a linear and positive correlation with both the concentration and duration of exposure to copper. In E. danricus, CAT appeared to be more sensitive to copper exposure (p < 0.001) than SOD at both lethal and sub-lethal levels. These results indicate that antioxidant responses can be employed as biomarkers of oxidative stress for this species in aquatic environments contaminated with copper.  相似文献   
20.

Purpose

Chickpea is generally cultivated after seed treatment with host-specific Mesorhizobium ciceri, the nitrogen-fixing bacterium forming root nodules. Some species of free-living cyanobacteria are capable of nitrogen fixation. We examined the rhizosphere microbiota changes and the potential for plant growth promotion by applying a free-living, nitrogen-fixing cyanobacterium and the biofilm formulation of cyanobacterium with M. ciceri, relative to M. ciceri applied singly, to two each of desi and kabuli varieties of chickpea.

Materials and methods

Denaturing gradient gel electrophoresis (DGGE) profiles of archaeal, bacterial and cyanobacterial communities and those of phospholipid fatty acids (PLFAs) were obtained to evaluate the changes of the microbial communities in the chickpea rhizosphere. Plant growth attributes, including the pod yields and the availabilities of soil macronutrients and micronutrients, were monitored.

Results and discussion

The DGGE profiles showed distinct and characteristic changes due to the microbial inoculation; varietal differences exerted a marked influence on the archaeal and cyanobacterial communities. However, bacterial communities were modulated more by the type of microbial inoculants. Abundance of Gram-negative bacteria (in terms of notional PLFAs) differed between the desi and the kabuli varieties inoculated with M. ciceri alone, and the principal component analysis of PLFA profiles confirmed the characteristic effect of microbial inoculants tested. Microbial inoculation led to increases in the 100-seed weight and differential effects on the concentrations of available nitrogen and phosphorus, and those of iron, zinc and copper, suggesting their increased cycling in the rhizosphere.

Conclusions

Microbial inoculation of chickpea brought out the characteristic changes in rhizosphere microbiota. Consequently, the growth promotion of chickpea and nutrient cycling in its rhizosphere distinctively differed. Further studies are needed to analyse the association and dynamic changes in the microbial communities to define the subset of microorganisms selected by chickpea in its rhizosphere and the influence of microbial inoculation.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号