首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   26篇
林业   28篇
农学   10篇
基础科学   5篇
  258篇
综合类   19篇
农作物   14篇
水产渔业   15篇
畜牧兽医   179篇
园艺   7篇
植物保护   24篇
  2022年   6篇
  2021年   11篇
  2020年   19篇
  2019年   9篇
  2018年   8篇
  2017年   15篇
  2016年   18篇
  2015年   13篇
  2014年   20篇
  2013年   35篇
  2012年   34篇
  2011年   53篇
  2010年   33篇
  2009年   21篇
  2008年   32篇
  2007年   30篇
  2006年   23篇
  2005年   15篇
  2004年   26篇
  2003年   11篇
  2002年   15篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1987年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   6篇
  1970年   1篇
  1969年   2篇
  1968年   4篇
  1967年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有559条查询结果,搜索用时 31 毫秒
551.
552.

? Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

? Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

? Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

? Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

? Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   
553.
Legumes have been shown to increase P uptake of the following cereal, but the underlying mechanisms are unclear. The aim of this study was to compare the effect of legume pre-crops and their residues on the growth, P uptake and size of soil P pools in the rhizosphere of the following wheat. Three grain legumes (faba bean, chickpea and white lupin) were grown until maturity in loamy sand soil with low P availability to which 80?mg P kg?1 was supplied. This pre-crop soil was then amended with legume residues or left un-amended and planted with wheat. The growth, P uptake and concentrations of P pools in the rhizosphere of the following wheat were measured 6?weeks after sowing. In a separate experiment, residue decomposition was measured over 42?days by determining soil CO2 release as well as available N and P. Decomposition rates were highest for chickpea residues and lowest for wheat residues. P release was greatest from white lupin residues and N release was greatest from faba bean residues, while wheat residues resulted in net N and P immobilisation. The growth of the following wheat was greater in legume pre-crop soil without residue than in soils with residue addition, while the reverse was true for plant P concentration. Among the legumes, faba bean had the strongest effect on growth, P uptake and concentrations of the rhizosphere P pools of the following wheat. Regardless of the pre-crop and residue treatment, wheat depleted the less labile pools residual P as well as NaOH-Pi and Po, with a stronger depletion of the organic pool. We conclude that although P in the added residues may become available during decomposition, the presence of the residues in the soil had a negative effect on the growth of the following wheat. Further, pre-crops or their residues had little effect on the size of P pools in the rhizosphere of wheat.  相似文献   
554.
In soils with low P availability, several legumes have been shown to mobilise less labile P pools and a greater capacity to take up P than cereals. But there is little information about the size of various soil P pools in the rhizosphere of legumes in soil fertilised with P although P fertiliser is often added to legumes to improve N2 fixation. The aim of this study was to compare the growth, P uptake and the changes in rhizosphere soil P pools in five grain legumes in a soil with added P. Nodulated chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (Lupinus angustifolius L.) were grown in a loamy sand soil low in available P to which 80 mg P kg−1 was added and harvested at flowering and maturity. At maturity, growth and P uptake decreased in the following order: faba bean > chickpea > narrow-leafed lupin > yellow lupin > white lupin. Compared to the unplanted soil, the depletion of labile P pools (resin P and NaHCO3-P inorganic) was greatest in the rhizosphere of faba bean (54% and 39%). Of the less labile P pools, NaOH-P inorganic was depleted in the rhizosphere of faba bean while NaOH-P organic and residual P were most strongly depleted in the rhizosphere of white lupin. The results suggest that even in the presence of labile P, less labile P pools may be depleted in the rhizosphere of some legumes.  相似文献   
555.
556.
557.
Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.  相似文献   
558.
Microbial communities were studied in redoximorphic microsites of highly heterogeneous Gleysol at a mm scale using 16S and 18S amplicon sequencing to demonstrate if the composition of soil microbes reflects the differences in ferric and ferrous micro-sites. In both explored gley horizons with redoximorphic features (Bg2 and Cg), ferric mottles were significantly enriched with total P and Fe and depleted of O, Si, Al, K and Ca compared with the adjacent ferrous groundmass (SEM–EDS). Ferric mottles were determined as Fe oxide coatings and hypocoatings. In Bg2, both prokaryotic and micro-eukaryotic communities differed significantly between mottles and groundmass in composition of operational taxonomic units (OTUs) and in proportions of phyla, reflecting heterogeneities in the soil properties there. Mottles in Bg2 were characterized by increased proportion of Proteobacteria, decreased proportion of Acidobacteriota among prokaryotes and by dominance of a single proteobacterial OTU from Anaplasmataceae compared to all other samples. The composition of micro-eukaryotes showed an opposite trend, as micro-eukaryotes of Bg2 groundmass were unique among the other horizons, while micro-eukaryotes of Bg2 mottles had similar composition to neighbouring horizons. Microbial communities of adjacent samples were not more similar to each other than communities of randomly selected ones in Bg2 horizon. That suggests that at mm scale, the sample distance does not represent the driving factor of microbial community composition and that the adjacent samples differ rather due to physicochemical factors. The spatial organization of microbial communities revealed in Bg2 has not reappeared in similarly organized Cg horizon, probably due to other overriding factors. The differences revealed between Bg2 and Cg horizons, including granulometric composition, content of crystalline Fe, exchangeable Al, and organic carbon, as well as exposition to groundwater, were discussed as possible reasons of the distinct organization in Cg. The similarity of pro−/eukaryotic communities of adjacent and non-adjacent couples suggests no distance decay pattern at a mm scale. The agreement between patchiness in soil properties and microbial communities was revealed for the first time and confirms the importance of microscale patterns in soil.  相似文献   
559.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号