首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70900篇
  免费   4003篇
  国内免费   34篇
林业   3230篇
农学   2530篇
基础科学   479篇
  8701篇
综合类   11416篇
农作物   2615篇
水产渔业   3645篇
畜牧兽医   36640篇
园艺   907篇
植物保护   4774篇
  2018年   1054篇
  2017年   1131篇
  2016年   1057篇
  2015年   911篇
  2014年   1139篇
  2013年   2632篇
  2012年   2065篇
  2011年   2472篇
  2010年   1685篇
  2009年   1752篇
  2008年   2594篇
  2007年   2367篇
  2006年   2327篇
  2005年   2126篇
  2004年   2193篇
  2003年   2166篇
  2002年   2036篇
  2001年   2368篇
  2000年   2378篇
  1999年   1926篇
  1998年   912篇
  1997年   821篇
  1996年   782篇
  1995年   862篇
  1994年   845篇
  1993年   767篇
  1992年   1523篇
  1991年   1542篇
  1990年   1663篇
  1989年   1507篇
  1988年   1450篇
  1987年   1340篇
  1986年   1385篇
  1985年   1336篇
  1984年   1128篇
  1983年   1027篇
  1982年   628篇
  1979年   1004篇
  1978年   795篇
  1977年   717篇
  1976年   676篇
  1975年   719篇
  1974年   766篇
  1973年   830篇
  1972年   803篇
  1971年   748篇
  1970年   729篇
  1969年   744篇
  1967年   658篇
  1966年   631篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
In recent years social, economic and environmental considerations have led to a reevaluation of the factors that contribute to sustainable urban environments. Increasingly, urban green space is seen as an integral part of cities providing a range of services to both the people and the wildlife living in urban areas. With this recognition and resulting from the simultaneous provision of different services, there is a real need to identify a research framework in which to develop multidisciplinary and interdisciplinary research on urban green space. In order to address these needs, an iterative process based on the delphi technique was developed, which comprised email-mediated discussions and a two-day symposium involving experts from various disciplines. The two outputs of this iterative process were (i) an integrated framework for multidisciplinary and interdisciplinary research and (ii) a catalogue of key research questions in urban green space research. The integrated framework presented here includes relevant research areas (i.e. ecosystem services, drivers of change, pressures on urban green space, human processes and goals of provision of urban green space) and emergent research themes in urban green space studies (i.e. physicality, experience, valuation, management and governance). Collectively these two outputs have the potential to establish an international research agenda for urban green space, which can contribute to the better understanding of people's relationship with cities.  相似文献   
992.

Background  

Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data.  相似文献   
993.
A three-dimensional mathematical hydraulic model was applied to calculate velocity profiles and discharge under steady, uniform flow conditions in rectangular and compound open-channel cross sections. The velocity profiles were used to calculate surface velocity coefficients for use with the float method for discharge estimation in the field. Surface velocity coefficients were calculated at increments of one-eighth of the base width from the vertical walls to the center of the cross section, and submergence of the float object from 0 to 30 cm, with a 5-cm depth increment. Model results were summarized to show the relationship between surface velocity coefficient and channel characteristics compared to values published by the US Bureau of Reclamation (USBR). For rectangular cross sections, the coefficients from the model are generally higher than the published USBR values. But the coefficients from the model and USBR are in very close agreement for the tested compound cross sections. The published coefficients by the USBR are a function of only average water depth. However, the model results show that the coefficient is also related to channel size, cross-sectional aspect ratio, surface roughness height, float submergence and lateral location of the float object. These factors should be included in the determination of the surface velocity coefficient to improve the discharge estimations from the application of the float method.  相似文献   
994.
A hybrid fuzzy-stochastic water-management (FSWM) model is developed for agricultural sustainability under uncertainty, based on advancement of a multistage fuzzy-stochastic quadratic programming (MFSQP) approach. In MFSQP, uncertainties presented in terms of fuzziness and randomness can be incorporated within a multilayer scenario tree, such that revised decisions are permitted in each time period based on the realized values of the uncertain events. Moreover, fuzzy quadratic terms are used in the objective function to minimize the variation of satisfaction degrees among the constraints; it allows an increased flexibility in controlling the system risk in the optimization process. Results of the case study indicate that useful solutions for the planning of agricultural water management have been obtained. In the FSWM model, a number of policies for agricultural water supply are conducted. The results obtained can help decision makers to identify desired water-allocation schemes for agricultural sustainability under uncertainty, particularly when limited water resources are available for multiple competing users.  相似文献   
995.
Reference evapotranspiration (ET0) estimations require accurate measurements of meteorological variables (solar radiation, air temperature, wind speed, and relative humidity) which are not available in many countries of the world. Alternative approaches are the use of Class A pan evaporimeters and atmometers, which have several advantages compared to meteorological stations: they are simple, inexpensive and provide a visual interpretation of ET0. The objectives of the study were to compare the evaporation from atmometers (ETgage) with the evapotranspiration estimated by the FAO-56 Penman-Monteith equation (ET0PM) and to evaluate the variability between three modified atmometers of a commercial model. Comparison between daily ETgage measured by the atmometer and ET0PM showed a good correlation. However, ETgage underestimated ET0PM by approximately 9%. Differences between ETgage and ET0PM ranged from −2.4 to 2.2 mm d−1 while the mean bias error was −0.41 mm d−1. Underestimations occurred more frequently on days with low maximum temperatures and high wind speeds. On the contrary, atmometer overestimations occurred on days with high maximum temperatures and low wind speeds. Estimates of ET0 using the atmometer appeared to be more accurate under non-windy conditions and moderate temperatures as well as under windy conditions and high temperatures. Atmometers 2 and 3 overestimated the evaporated water by atmometer 1 with a maximum variability of cumulative water losses of 4.5%. A temperature-based calibration was performed to improve the atmometer accuracy, using maximum temperature as an independent variable, with good results.  相似文献   
996.
The quantity of water available for irrigation is getting scarce in many countries and it assumes great importance for assured crop production, especially in view of the erratic behavior of the monsoon. Thus, there is a pressing need to improve the water efficiency of irrigation systems. One-way of improving the efficiency of the irrigation system is reusing the return flow from the irrigation system. This task requires quantification of return flow, which still remains as a grey area in irrigation water management. The estimation of return flow from the irrigation system is usually obtained using thumb rules depending upon the site-specific conditions like command area conditions and soil properties. In this paper, a hierarchical modeling technique, namely, regression tree is developed for return flow estimation. Regression tree is built through binary recursive partitioning. The effective rainfall, inflow, consumptive water demand, and percolation loss are taken as predictor variables and return flow is treated as the target variable. The applicability of the hierarchical model is demonstrated through a case study of Periyar-Vaigai Irrigation System in Tamil Nadu, India. The model performance shows a good match between the simulated and the field measured return flow values. Results of statistical analysis indicated that the correlation coefficients are high for both single as well as double crop seasons.  相似文献   
997.
Although rainfall in the United States Mid-South is sufficient to produce corn (Zea mays L.) without irrigation in most years, timely irrigation has been shown to increase yields. The recent interest in ethanol fuels is expected to lead to increases in US corn production, and subsurface drip irrigation (SDI) is one possible way to increase application efficiency and thereby reduce water use. The objective of this study was to determine the response of SDI-irrigated corn produced in the US Mid-South. Field studies were conducted at the University of Arkansas Northeast Research and Extension Center at Keiser during the 2002-2004 growing seasons. The soil was mixed, with areas of fine sandy loam, loamy sand, and silty clay. SDI tubing was placed under every row at a depth of approximately 30 cm. Three irrigation levels were compared, with irrigation replacing 100% and 60% of estimated daily water use and no irrigations. The split plot treatment was hybrid, with three hybrids of different relative maturities. Although the 3-year means indicated significantly lower yields for a nonirrigated treatment, no significant differences were observed among the treatments in 2003 or 2004. A large difference was observed in 2002, the year with the least rainfall during the study period, but no difference was detected between the two irrigated treatments in any year. The treatment with the lower water application had the higher irrigation water use efficiency. Although the results of this study suggested that replacing 60% of the estimated daily evapotranspiration with SDI is sufficient for maximum corn yields, additional observations will be needed to determine whether corn production with SDI is feasible in the region and to develop recommendations for farmers choosing to adopt the method. Improved weather forecasting and crop coefficient functions developed specifically for the region should also contribute to more efficient irrigation management.  相似文献   
998.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   
999.
The Central Asian countries face high water scarcity due to aridity and desertification but excess water is often applied to the main irrigated crops. This over-irrigation contributes to aggravate water scarcity problems. Improved water saving irrigation is therefore required, mainly through appropriate irrigation scheduling. To provide for it, after being previously calibrated and validated for cotton in the Fergana region, the irrigation scheduling simulation model ISAREG was explored to simulate improved irrigation scheduling alternatives. Results show that using the present irrigation scheduling a large part of the applied water, averaging 20%, percolates out of the root zone. Several irrigation strategies were analyzed, including full irrigation and various levels of deficit irrigation. The analysis focused a three-year period when experiments for calibration and validation of the model were carried out, and a longer period of 33 years that provided for an analysis considering the probabilities of the demand for irrigation water. The first concerned a wet period while the second includes a variety of climatic demand conditions that provided for analyzing alternative schedules for average, high and very high climatic demand. Results have shown the importance of the groundwater contribution, mainly when deficit irrigation is applied. Analyzing several deficit irrigation strategies through the respective potential water saving, relative yield losses, water productivity and economic water productivity, it could be concluded that relative mild deficits may be adopted. Contrarily, the adoption of high water deficit that produce high water savings would lead to yield losses that may be economically not acceptable.  相似文献   
1000.
牧场土壤含水率与坚实度空间变异与相关性分   总被引:3,自引:2,他引:1  
利用土壤水分/圆锥指数复合测量装置,应用精细农作技术体系网格定点测量与GPS定位,在一块面积约1.27 hm2的草地上获取了土壤含水率与坚实度空间分布基础数据,并针对采样过程中出现的数据缺失,用偏最小二乘法对数据进行修补.然后运用克里格插值法进行数字化成图,并在此基础上分别对含水率与坚实度的空间变异性及两者的相关性做了分析.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号