首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
林业   1篇
  11篇
综合类   7篇
农作物   7篇
水产渔业   10篇
畜牧兽医   8篇
园艺   3篇
植物保护   3篇
  2024年   1篇
  2022年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   13篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1995年   2篇
  1985年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
21.
The only known sink for nitrous oxide (N2O) is biochemical reduction to dinitrogen (N2) by N2O reductase (N2OR). We hypothesized that the application of N2O-reducing denitrifier-inoculated organic fertilizer could enhance soil N2O consumption while the disruption of nosZ genes could result in inactivation of N2O consumption. To test such hypotheses, a denitrifier-inoculated granular organic fertilizer was applied to both soil microcosms and fields. Of 41 denitrifier strains, 38 generated 30N2 in the end products of denitrification (30N2 and 46N2O) after the addition of Na15NO3 in culture condition, indicating their high N2O reductase activities. Of these 41 strains, 18 were screened in soil microcosms after their inoculation into the organic fertilizer, most of which were affiliated with Azospirillum and Herbaspirillum. These 18 strains were nutritionally starved to improve their survival in soil, and 14 starved and/or non-starved strains significantly decreased N2O emissions in soil microcosms. However, the N2O emission had not been decreased in soil microcosms after inoculating with a nosZ gene-disruptive strain, suggesting that N2O reductase activity might be essential for N2O consumption. Although the decrease of N2O was not significant at field scales, the application of organic fertilizer inoculated with Azospirillum sp. TSH100 and Herbaspirillum sp. UKPF54 had decreased the N2O emissions by 36.7% in Fluvisol and 23.4% in Andosol in 2014, but by 21.6% in Andosol in 2015 (H. sp. UKPF54 only). These results suggest that the application of N2O-reducing denitrifier-inoculated organic fertilizer may enhance N2O consumption or decrease N2O emissions in agricultural soils.  相似文献   
22.
23.
24.
25.
Iron Uptake and Loading into Rice Grains   总被引:3,自引:1,他引:2  
Iron (Fe) is an important micronutrient for living organisms. Fe deficiency severely impairs plant growth and is a widespread human dietary problem, with particularly high numbers of affected children and females. Rice (Oryza sativa) is a source of energy for more than half of the world’s population. Thus, understanding the mechanisms of Fe uptake and translocation in rice is of utmost importance in the development of rice varieties that are tolerant to low Fe availability and with high seed levels of Fe. In recent years, the mechanisms underlying Fe transport and homeostasis have been revealed, providing opportunities to increase the Fe content of rice grain. As excess Fe is toxic to cells, plants have developed sophisticated mechanisms to control Fe flow, making it difficult to alter Fe transport. Thus, choosing appropriate chelators and Fe transporters driven by appropriate promoters seems to be the key in developing rice that is tolerant to low Fe availability and which accumulates high grain levels of Fe. Many recent studies have been aimed at increasing the Fe content of rice. Here, we summarize these efforts and review recent progress in understanding the mechanisms of Fe transport.  相似文献   
26.
27.
Ultrasonic vocalizations (USVs) are observed along with freezing behavior when rats are placed under fearful situation. Coping style with stress is categorized into two forms, namely passive and emotional avoidance and active operant avoidance. In this study, fear-induced USV was compared between two conditioning protocols. Two groups of male Wistar rats were contextually conditioned for 10 days by exposing to the shock box. One group was shock-unavoidable and the other shock-avoidable by operant control of emitting the USVs. They were then proceeded to the extinction phase. As the results, the shock-unavoidable group emitted greater USV in both conditioning and extinction phases. The extinction burst, commonly seen in active learned responses, was not observed in either group. The duration of freezing was also longer in shock-unavoidable conditioned rats. These results suggest that under the shock-unavoidable condition, rats receive more stress and thus emit more USV. It is therefore concluded that fear-induced USV is an emotional and passive response to the stress, rather than being controlled in an operant-way.  相似文献   
28.
Bisphenol A (BPA), a candidate endocrine disruptor (ED), is considered to bind to estrogen receptors and to regulate expressions of estrogen responsive genes. It has also shown evidence of affecting the reproductive, immunological and nervous systems of mammalian embryos. However, the effects of BPA on placentae, a central organ of feto-maternal interlocution, are still unclear. To reveal the mechanisms of BPA effects on placentae in mammals, we compared the mRNA expression of 20 nuclear receptors between placentae of vehicle controls and those of orally BPA exposed pregnant mice by a DNA microarray technique. In murine placentae, mRNAs of 11 nuclear receptors were not detected. However, greater than 1.5 fold changes in mRNA expression of nine nuclear receptors between vehicle control and BPA treated mice were noted. Moreover, remarkable changes in mRNA expression of six non-nuclear receptor proteins were induced by BPA exposure. There were various differences in the effects of BPA on the expression of these mRNAs between the placentae with male embryos and those with female embryos. Such embryo-sex dependent differences are interesting and important pointers to understanding of the endocrine disrupting effect of BPA. The present data indicate that BPA affects the expression of nuclear receptor mRNAs in placentae and may disrupt the physiological functions of placentae.  相似文献   
29.
A transgenic cucumber line (CR32) over-expressing the rice class I chitinase gene exhibited resistance to Phytophthora rot (Phytophthora nicotianae var. parasitica) but not to Fusarium wilt (Fusarium oxysporum f. sp. cucumerinum). The infection behavior of these fungi on CR32 and nontransgenic plants was examined with an optical microscope. In zoosporangia of P. nicotianae var. parasitica, the rates of germination and penetration on leaves of both CR32 and nontransgenic plants were almost equal. After infection, however, the growth of infection hyphae was markedly suppressed in CR32 compared with their growth in the nontransgenic plants. In F. oxysporum f. sp. cucumerinum, the infection hyphae localized in petiole vessels of both CR32 and nontransgenic plants, and growth did not differ in the two plants. We investigated the antifungal activity of a high-molecular-weight fraction (HF) and a low-molecular-weight fraction (LF) of crude leaf extracts from CR32 and from the nontransgenic line. CR32 HF, which included the rice chitinase, had antifungal activity only against F. oxysporum f. sp. cucumerinum. In contrast, CR32 LF, which did not have the rice chitinase, had strong antifungal activity against the two fungi. These results suggested that a low-molecular-weight antifungal substance(s) was induced in CR32 and might function as a factor of resistance to P. nicotianae var. parasitica, which has cell walls that almost never contain chitin. Because rice chitinase has already been demonstrated not to localize in vessels of CR32, the infection localization of F. oxysporum f. sp. cucumerinum in vessels might enable the fungus to avoid antifungal substance(s), resulting in Fusarium wilt in transgenic cucumber.  相似文献   
30.
In humans, iron (Fe) and zinc (Zn) deficiencies result in major worldwide health problems. Transgenic technologies to produce Fe- and Zn-biofortified rice varieties offer a promising potential solution. Nicotianamine, the precursor of phytosiderophores, chelates Fe2+ and Zn2+ and plays an important role in transporting these metals to both vegetative and reproductive organs within the plant. Our objective was to increase Fe and Zn contents in rice grains by overexpressing the barley nicotianamine synthase gene HvNAS1. HvNAS1-overexpressing transgenic rice showed increased HvNAS1 expression and subsequent increases in endogenous nicotianamine and phytosiderophore content in shoots, roots, and seeds. Fe and Zn concentrations in polished T1 seeds from transgenic plants increased more than three and twofold, respectively; Fe and Zn concentrations also increased in both polished and brown T2 seeds. These results suggest that the overproduction of nicotianamine enhances the translocation of Fe and Zn into rice grains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号