首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   68篇
  国内免费   9篇
林业   70篇
农学   76篇
基础科学   27篇
  425篇
综合类   107篇
农作物   105篇
水产渔业   64篇
畜牧兽医   195篇
园艺   28篇
植物保护   104篇
  2023年   17篇
  2022年   52篇
  2021年   74篇
  2020年   75篇
  2019年   93篇
  2018年   117篇
  2017年   107篇
  2016年   82篇
  2015年   38篇
  2014年   45篇
  2013年   135篇
  2012年   58篇
  2011年   74篇
  2010年   41篇
  2009年   25篇
  2008年   38篇
  2007年   26篇
  2006年   26篇
  2005年   11篇
  2004年   9篇
  2003年   8篇
  2002年   6篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有1201条查询结果,搜索用时 15 毫秒
151.
Purpose

This study assesses the potential of two contrasted fragrant Pelargonium cultivars to induce pH and dissolved organic carbon (DOC) changes in the soil solution, Pb speciation, and their subsequent effects on rhizosphere phytoavailable Pb.

Materials and methods

Rooted plantlets were grown in special devices, floating on aerated nutrient solution in PVC tanks. This setup allows roots to be physically separated, through a mesh, from a 3-mm soil matrix layer that can be considered as rhizosphere soil. Two contrasted soils, each spiked with Pb-rich particles, emitted from a battery recycling industry, were used at total burdens of 500 and 1500 mg Pb kg?1 in addition to a control unspiked soil. Soil solution pH, phytoavailable Pb, DOC, Pb adsorption, precipitation on roots, and Pb phases in soil and plant were investigated.

Results and discussion

Attar of Roses (Attar) cultivar acidified its rhizosphere by 0.4 pH units in both spiked soils. Concolor Lace (Concolor) was unable to change soil solution pH on soil-1 and increased it by 0.7 units on soil 2. Concentrations of Pb in soil solution from Attar plants were always higher than those of Concolor ones. DOC contents of both unspiked soil-1 and soil-2 without plants were not significantly different. In the case of spiked samples, DOC contents in the rhizosphere soil were increased by three and two times for Attar and Concolor, respectively, compared to the unspiked soil without plant. Both cultivars were able to increase DOC contents, independent of soil type and level of contamination. Accumulation of Pb in shoots and roots was higher in Attar as compared to Concolor due to enhanced available Pb as a result of pH and DOC modifications of the rhizosphere soil. Significant amounts of Pb were adsorbed on roots of both cultivars. X-ray elemental analysis of precipitates on roots revealed the association of Pb with P in cylinder-like structures. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that Pb was present, to a major extent in the inorganic form, mainly as PbSO4 in the soil, whereas it was complexed with organic species within plant tissues. The conversion of Pb into organic species could decrease toxicity, may enhance plant tolerance, and could increase translocation.

Conclusions

Plant-induced changes were responsible for the modification of lead phases within the soil. Immobile forms present in the source leaded particles as well as in the soils were converted into soluble species, ultimately improving the phytoavailable or soil solubilized Pb.

  相似文献   
152.
153.
Removal of early fruiting branches with greater potassium doses caused more source and no sink at early stages of growth, leading to improved yield, yield components, and fiber quality traits in Bt cotton. The study used manual alteration of plant architecture (F1, no branch removal; F2, removal of first fruiting branch; F3, removal of first and second fruiting branches; F4, removal of all squares from first fruiting branch; F5, removal of all squares from first and second fruiting branches) and potassium rates (50, 100, and 150 kg ha?1) in a randomized complete block design and was repeated for 2 years (2011 and 2012). Increasing potassium application increased total bolls per plant and cotton yield to the greatest levels in F3 and F5, against lowest level in the control. Ginning out turn, fiber length, seed oil, and seed protein content were influenced by fruiting branch or square removal but the difference was less. Increasing potassium improved seed and fiber quality.  相似文献   
154.
Exploitation of genetic differences to select wheat cultivars’ pollution-safe from cadmium (Cd) contamination requires better understanding of Cd uptake and translocation patterns. For this purpose, 15 wheat cultivars were grown in nutrient solution and exposed to four levels of Cd, i.e., 0, 15, 30, and 45 µM. The plants were harvested after 2 weeks of Cd exposure. Root and shoot relative dry matter (DM) was decreased in most of the cultivars, but some cultivars did not exhibit any toxic symptoms. The lowest Cd concentration in shoots was recorded for Lasani-2008 and Iqbal-2000 while the highest for Sehar-2006 and Inqlab-91. Both root absorption and translocation accounted for regulating Cd concentration in shoots. There was no relationship between relative DM and Cd concentrations in roots and shoots. The results suggest that wheat cultivars with low shoot Cd concentration but higher tolerance, i.e. Lasani-2008 and Iqbal-2000, could be used in breading programs for low Cd wheat.  相似文献   
155.
156.
157.
More than 50% of global soil organic carbon stocks are stored below 20 cm of soil depth capable of massively altering global C cycle and climate. However, subsoil C dynamics are largely overlooked implicitly assuming that surface and subsoil C dynamics are similar. Here, we compared the soil C dynamics in surface and subsurface soil layers in response to nitrogen and maize leaf litter additions. Soils, sampled from 0 to 5, 15 to 35, 35 to 55 and 55 to 75 cm depths, were incubated at 25°C after adding litter, nitrogen (NH4NO3) or litter plus nitrogen. Soil respiration (C mineralization) was measured throughout the incubation period. Litter addition significantly increased C mineralization in all the soil layers. However, the soil CO2 release relative to control was more than twofold higher in 15–35 and 35–55 cm soil layers than the surface layer. Nitrogen additions significantly decreased C mineralization in 0–15 cm soil, increased in 35–55 cm and had minimal effects in the 15–35 and 55–75 cm layers. Different soil C dynamics in surface and subsurface soil layers found in our study contradict the general assumption that soil C dynamics may be treated similarly along different soil depths.  相似文献   
158.
Comparative efficacy of three different modified atmospheres: 100% CO2, 75% CO2 + 25% N2, and 22 ppm ozone were examined against larval mortality of the almond moth, Ephestia cautella (Walker) (Lepidoptera: Pyralidae) at temperature regimes of 25°C and 35 ± 2°C and 60 ± 5% relative humidity, and 9:15 dark and light. Wandering young larval instars, which are fast growing, large enough in size and considered as more tolerant to modified atmosphere, were collected directly from the rearing culture, placed inside pitted date fruits of vars.: “Khudri,” “Ruziz,” and “Saqie,” were treated with aforementioned gases for 24, 48, and 72 h. The immediate and delayed larval mortality was recorded after each exposure timing. Ozone possessed the strongest fumigant toxicity causing 100% mortality with all varieties, at 25 and 35°C after 24 h exposure and was more effective than 75% CO2 that caused 83 and 100% immediate mortality with variety ruziz at 25 and 35°C, respectively. Extending the treatments exposure time to 72 h, 100% mortality was recorded by exposing larvae to any of the studied gases at 25 and 35°C. These results suggest that gases and temperature used in this study can be effectively used to control E. cautella in dates and stored grains.  相似文献   
159.
Information on the pathogen virulence profile and diversity across locations is crucial for host germplasm improvement and deployment. The rapid acquisition of virulence to host resistance by the wheat yellow/stripe rust pathogen (Puccinia striiformis f.sp. tritici: PST), makes it crucial to know about its virulence and pathotype diversity. Recent studies have shown the plausible centre of origin of the pathogen in the Himalayan region, with Pakistan being the most ancestral to all other worldwide populations. To assess the status of virulence and pathotype diversity in the Himalayan region of Pakistan, a set of 127 PST infected wheat samples from eight locations were collected, multiplied and pathotyped using a set of 36 differential lines from the world set, European and Chinese sets, and 9 Avocet Yr isolines. Virulence (Vr) was recorded to 18 out of 24 tested yellow rust resistance (Yr) genes, while a total of 53 pathotypes were detected out of 127 isolates tested. Virulence was found to the resistance genes rarely deployed in Pakistan (Vr8) or even worldwide level (Vr5), while virulence to Vilmorin 23 (Yr3+) was absent in Pakistan, which is common in Europe. None of the pathotypes was dominant across all locations, however, no clear spatial structuring was observed for the studied locations. Our results suggested a high virulence and pathotype diversity in line with the previously proposed potential role of sexual recombination in the temporal maintenance of PST in the Himalayan region of Pakistan. This information should be useful in host resistance gene improvement and deployment.  相似文献   
160.
Wheat is one of the most widely cultivated crops and, being the staple diet of more than 40 countries, it plays an imperative role in food security. Wheat has remarkable genetic potential to synchronize its flowering time with favourable environmental conditions. This ability to time its flowering is a key factor for its global adaptability and enables wheat plant to produce satisfactory grain yield under very diverse temperature and soil moisture conditions. Vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) are the three genetic systems controlling flowering time in wheat. The objective of this review is to provide comprehensive information on the physiological, molecular and biological aspects of the three genetic constituents of flowering and maturity time in wheat. Reviews written in the past have covered either one of the aspects; and generally focused on one of the three genetic constituents of the flowering time. The current review provides (a) a detailed overview of all three gene systems (vernalization, photoperiod and earliness per se) controlling flowering time, (b) details of the primer sequences, their annealing temperatures and expected amplicon sizes for all known markers of detecting vernalization and photoperiod alleles, and (c) an up to date list of QTLs affecting flowering and/or maturity time in wheat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号