首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2958篇
  免费   180篇
  国内免费   17篇
林业   209篇
农学   182篇
基础科学   63篇
  819篇
综合类   237篇
农作物   364篇
水产渔业   242篇
畜牧兽医   601篇
园艺   105篇
植物保护   333篇
  2024年   3篇
  2023年   34篇
  2022年   108篇
  2021年   140篇
  2020年   157篇
  2019年   204篇
  2018年   234篇
  2017年   217篇
  2016年   199篇
  2015年   105篇
  2014年   124篇
  2013年   331篇
  2012年   160篇
  2011年   192篇
  2010年   143篇
  2009年   92篇
  2008年   151篇
  2007年   81篇
  2006年   70篇
  2005年   49篇
  2004年   39篇
  2003年   38篇
  2002年   30篇
  2001年   17篇
  2000年   31篇
  1999年   17篇
  1998年   19篇
  1997年   13篇
  1996年   19篇
  1995年   13篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   9篇
  1983年   7篇
  1982年   3篇
  1981年   5篇
  1979年   5篇
  1975年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1967年   3篇
排序方式: 共有3155条查询结果,搜索用时 46 毫秒
31.
This study was conducted on Gugera Branch of Lower Chenab Canal, Punjab, Pakistan. Sample distributaries off taking from Gugera Branch were selected for the study. The existing conditions of water distribution among the distributaries were studied. Field data were collected during the whole of 1988. Field observations suggested that the variability at the head of distributaries is much greater than the variability in the Gugera Branch under existing operational practices. The distribution of water among the distributaries is rarely in accordance with design criteria. Some channels get priority over other channels. The annual closure period varied from 17 to 41 days for different channels. The discharge at the head of distributaries remained lower than the standard operational range for 69 to 183 days in a year. The data suggested that a regulating gate at the head of the distributary can reduce discharge variation up to 2.4 times compared with a Karrees System (wooden stop logs used for water regulation). The data indicated that the adjustments in the head gate of a distributary on daily basis can substantially improve discharge conditions at the head of distributary. Rotational schedules are not being followed as per design and need to be improved. Most of the existing head discharge relationships of discharge measuring structures are not reliable. A frequent calibration of these structures is recommended.  相似文献   
32.
Ethanolic extracts of 58 Malaysian plants belonging to 24 different families were screened for antifungal activity against seven plant pathogens using the filter paper disc diffusion technique. Two varieties of Piper betle, showed strong activity against all the pathogens tested (Colletotrichum capsici, Fusarium pallidoroseum, Botryodiplodia theobromae, Alternaria alternata, Penicillium citrinum, Phomopsis caricae-papayae and Aspergillus niger), with inhibition diameters significantly (P<0·01) bigger than 2·5 mg ml−1 prochloraz or 10 mg ml−1 clotrimazole. The minimum inhibitory concentrations of the ethanolic extracts of P. betle against these plant pathogens ranged between 0·01 mg ml−1 and 1 mg ml−1. Thirty-four other plants (Kucing gala, Limau batik, Bertholletia excelsa, Bixa orellana, Caesalpinia pulcherrima, Cerbera odollam (fruits and leaves), Colocasia gigantea, Curcuma domestica, Curcuma manga, Derris eliptica, Elephantopus scaber, Eleusine indica, Eugenia polyantha, Euphorbia hirta, Euphorbia tirucalli, Gardenia florida, Hedyotis auricularia, Hibiscus rosa-sinensis, Juniperus chinensis (three varieties), Lawsonia inermis, Lecythis ollaria, Mentha arvensis, Mimusops elengi, Ocimum sanctum, Phyllanthus niruri, Piper nigrum, Piperomia pellucida, Pedilanthus tithymaloides, Polygonum minus, Spondias dulcis, Solanum nigrum, Tinospora tuberculata) showed selective antifungal activity, while 21 species were inactive.  相似文献   
33.
Sustainability of traditionally cultivated rice in the rice-wheat cropping zone (RWCZ) of Pakistan is dwindling due to the high cost of production, declining water resources and escalating labour availability. Thus, farmers and researchers are compelled to find promising alternatives to traditional transplanted rice (TPR). A field study was conducted in Punjab, Pakistan, in 2017 and 2018 to explore the trade-offs between water saving and paddy yield, water productivity and economics of two aromatic rice varieties under dry direct seeded rice (DDSR) and TPR. The experiment was comprised of three irrigation regimes on the basis of soil moisture tension (SMT) viz., continuous flooded (>−10 kPa SMT), alternate wetting and drying (AWD) (−20 kPa SMT) and aerobic rice (−40 kPa SMT), maintained under TPR and DDSR systems. Two aromatic rice verities: Basmati-515 and Chenab Basmati-2016 were used during both years of study. In both years, DDSR produced higher yields (13–18%) and reduced the total water inputs (8–12%) in comparison to TPR. In comparison to traditional continuous flooded (CF), AWD under DDSR reduced total water input by 27–29% and improved the leaf area index (LAI), tillering, yield (7–9%), and water productivity (44–50%). The performance of AWD with regard to water savings and increased productivity was much higher in DDSR system as compared to AWD in TPR system. Cultivation of DDSR with aerobic irrigation improved water savings (49–55%) and water productivity (22–30%) at the expense of paddy yield reduction (36–39%) and spikelet sterility. With regard to variety, the highest paddy yield (6.6 and 6.7 t ha−1) was recorded in DDSR using Chenab Basmati-2016 under AWD irrigation threshold that attributed to high tiller density and LAI. The economic analysis showed DDSR as more beneficial rice establishment method than TPR with a high benefit-cost ratio (BCR) when the crop was irrigated with AWD irrigation threshold. Our results highlighted that with the use of short duration varieties, DDSR cultivation in conjunction with AWD irrigation can be more beneficial for higher productivity and crop yield.  相似文献   
34.
The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degradation in the rumen. The objectives of the current study were to determine the effect of inoculation of rumen fluid(RF) with three species of bacteria isolated from termite digestive tract, Bacillus licheniformis, Ochrobactrum intermedium, and Microbacterium paludicola, on in vitro gas production(IVGP), fermentation parameters, nutrient disappearance, microbial populations, and hydrolytic enzyme activities with fibrous wheat straw(WS) and date leaf(DL) as incubation substrate. Inoculation of RF with either of three termite bacteria increased(P0.05) ammonia-N concentration compared with the control group(free of termite gut bacteria). Termite bacteria inoculation had no effect(P0.05) on gas production characteristics, dry matter, organic matter and neutral detergent fiber disappearance, pH, and concentration and composition of volatile fatty acids. Population of proteolytic bacteria and protozoa, but not cellulolytic bacteria, were increased(P0.05) when RF was inoculated with termite bacteria with both WS and DL substrates. Inoculation of RF with termite bacteria increased protease activity, while activities of carboxymethyl-cellulase, microcrystalline-cellulase, α-amylase and filter paper degrading activity remained unchanged(P0.05). Overall, the results of this study indicated that transferring lignocellulose-degrading bacteria, isolated from digestive tract of termite, to rumen liquid increased protozoa and proteolytic bacteria population and consequently increased protease activity and ammonia-N concentration in vitro, however, no effect on fermentation and fiber degradation parameters were detected. These results suggest that the termite bacteria might be rapidly lysed by the rumen microbes before beneficial effects on the rumen fermentation process could occur.  相似文献   
35.
Stripe rust is a continuous threat to wheat crop all over the world. It causes considerable yield losses in wheat crop every year. Continuous deployment of adult plant resistance(APR) genes in newly developing wheat cultivars is the most judicious strategy to combat this disease. Herein, we dissected the genetics underpinning stripe rust resistance in Pakistani wheat germplasm. An association panel of 94 spring wheat genotypes was phenotyped for two years to score the infestation of stripe rust on each accession and was scanned with 203 polymorphic SSRs. Based on D' measure, linkage disequilibrium(LD) exhibited between loci distant up to 45 c M. Marker-trait associations(MTAs) were determined using mixed linear model(MLM). Total 31 quantitative trait loci(QTLs) were observed on all 21 wheat chromosomes. Twelve QTLs were newly discovered as well as 19 QTLs and 35 previously reported Yr genes were validated in Pakistani wheat germplasm. The major QTLs were QYr.uaf.2 AL and QYr.uaf.3 BS(PVE, 11.9%). Dissection of genes from the newly observed QTLs can provide new APR genes to improve genetic resources for APR resistance in wheat crop.  相似文献   
36.
本研究通过低氮压力选择,筛选出甘蔗氮高效种质,分析影响甘蔗氮高效的重要指标,为甘蔗氮高效育种及栽培提供理论依据。以58份甘蔗种质资源为材料,在苗期采用正常供氮(2 mmol/L N)和低氮(0.2 mmol/L N)处理,分析甘蔗植株形态、干重及氮素在各器官中累积分配的特征。通过主成分分析方法筛选影响甘蔗氮高效利用的重要指标,通过聚类分析对58份种质进行聚类。结果表明,低氮(0.2 mmol/L N)处理可以明显从植物形态区分不同种质的氮利用差异,58份种质低氮条件下的干重范围为0.64~14.75 g/株,氮累积量为5.53~63.00 mg/株,氮利用率范围为115.40~279.30 g/g。对低氮压力下甘蔗干重及氮累积等25个指标进行主成分分析后,提取出4个主要成分,总贡献率为92.35%。通过高、低氮条件下与氮利用效率有关的氮转移系数及基因潜力等19个指标分析后提取出5个主成分,总贡献率为82.21%。影响甘蔗氮高效的重要指标有甘蔗的干重(全株、叶、根)、氮累积量(全株、叶、茎)、氮利用率(全株、叶)、叶的相对氮利用率、茎的基因潜力、茎的相对干物质量和茎的相对氮累积量。经聚类分析后初步将58份甘蔗种质分为氮高效基因型、偏氮高效基因型、偏氮低效基因型和氮低效基因型。  相似文献   
37.
正Drought is one of the most prevalent abiotic stresses that adversely affect rice productivity(Petrozza et al, 2014). Rice is very sensitive to drought stress and drought can cause 50% reduction in rice production globally(Yang et al, 2008). To meet the food needs for global population, 63% more agricultural production will be required by the year 2050 than  相似文献   
38.
Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)–microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.  相似文献   
39.
Marine-derived substances are known for their beneficial influences on aquatic animals’ performances and are recommended to improve intestinal health, immunity, and anti-oxidative status. The present study investigates the role of chitosan nanoparticles on the intestinal histo-morphometrical features in association with the health and immune response of Grey Mullet (Liza ramada). Chitosan nanoparticles are included in the diets at 0, 0.5, 1, and 2 g/kg and introduced to fish in a successive feeding trial for eight weeks. The final body weight (FBW), weight gain (WG), and specific growth rate (SGR) parameters are significantly increased while feed conversion ratio (FCR) decreases by chitosan nanoparticles compared to the control (p < 0.05). The morphometric analysis of the intestines reveals a significant improvement in villus height, villus width, and the number of goblet cells in chitosan-treated groups in a dose-dependent manner. Additionally, there is a positive correlation between the thickness of the enterocyte brush border and the chitosan dose, referring to an increasing absorptive activity. Histologically, the intestinal wall of Grey Mullet consists of four layers; mucosa, sub-mucosa, tunica muscularis (muscular layers), and serosa. The histological examination of the L. ramada intestine shows a normal histo-morphology. The epithelial layer of intestinal mucosa is thrown into elongated finger-like projections, the intestinal villi. The values of hemoglobin, hematocrit, red blood cells (RBCs), total protein (TP), albumin, and globulin are significantly increased in fish fed 1, and 2 g/kg of chitosan nanoparticles compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest levels of TP and albumin are observed in fish fed 1 g/kg diet (p < 0.05). The lysozyme activity and phagocytic index are significantly enhanced by feeding chitosan nanoparticles at 0.5, 1, and 2 g/kg, whereas the phagocytic activity is improved in fish fed 1 and 2 g/kg (p < 0.05). The highest lysozyme activity and phagocytic index are observed in fish fed 1 g/kg. SOD is significantly activated by feeding chitosan nanoparticles at 1 g/kg. Simultaneously, glutathione peroxidase (GPx) and catalase (CAT) activities also are enhanced by feeding chitosan at 1 and 2 g/kg, compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest GPx and CAT activities are observed in fish fed 1 g/kg (p < 0.05). Conversely, the malondialdehyde (MDA) levels are decreased by feeding chitosan at 1 and 2 g/kg, with the lowest being in fish fed 1 g/kg (p < 0.05). To summarize, the results elucidate that L. ramada fed dietary chitosan nanoparticles have a marked growth rate, immune response, and anti-oxidative response. These improvements are attributed to the potential role of chitosan nanoparticles in enhancing intestinal histo-morphometry and intestinal health. These results soundly support the possibility of using chitosan nanoparticles at 1–2 g/kg as a feasible functional supplement for aquatic animals.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号