首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
林业   6篇
农学   1篇
  4篇
畜牧兽医   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1988年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
During 2005–2007, we used the eddy covariance and associated hydrometric methods to construct energy and water budgets along a chronosequence of loblolly pine (Pinus taeda) plantations that included a mid-rotation stand (LP) (i.e., 13–15 years old) and a recently established stand on a clearcut site (CC) (i.e., 4–6 years old) in Eastern North Carolina. Our central objective was to quantify the differences in both energy and water balances between the two contrasting stands and understand the underlining mechanisms of environmental controls. We found that the LP site received about 20% more net radiation (Rn) due to its lower averaged albedo (α) of 0.25, compared with that at the CC (α = 0.34). The mean monthly averaged Bowen ratios (β) at the LP site were 0.89 ± 0.7, significantly (p = 0.02) lower than at the CC site (1.45 ± 1.2). Higher net radiation resulted in a 28% higher (p = 0.02) latent heat flux (LE) for ecosystem evapotranspiration at the LP site, but there was no difference in sensible heat flux (H) between the two contrasting sites. The annual total evapotranspiration (ET) at the LP site and CC site was estimated as 1011–1226 and 755–855 mm year−1, respectively. The differences in ET rates between the two contrasting sites occurred mostly during the non-growing seasons and/or dry periods, and they were small during peak growing seasons or wet periods. Higher net radiation and biomass in LP were believed to be responsible to the higher ET. The monthly ET/Grass Reference ET ratios differed significantly across site and season. The annual ET/P ratio for the LP and CC were estimated as 0.70–1.13 and 0.60–0.88, respectively, indicating higher runoff production from the CC site than the LP site. This study implied that reforestation practices reduced surface albedos and thus increased available energy, but they did not necessarily increase energy for warming the atmosphere in the coastal plain region where soil water was generally not limited. This study showed the highly variable response of energy and water balances to forest management due to climatic variability.  相似文献   
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号