首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
林业   3篇
农学   1篇
  16篇
综合类   4篇
农作物   2篇
水产渔业   4篇
畜牧兽医   52篇
园艺   1篇
植物保护   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   9篇
  2008年   10篇
  2007年   5篇
  2006年   2篇
  2005年   10篇
  2004年   3篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
81.
Patient-specific, immune-matched human embryonic stem cells (hESCs) are anticipated to be of great biomedical importance for studies of disease and development and to advance clinical deliberations regarding stem cell transplantation. Eleven hESC lines were established by somatic cell nuclear transfer (SCNT) of skin cells from patients with disease or injury into donated oocytes. These lines, nuclear transfer (NT)-hESCs, grown on human feeders from the same NT donor or from genetically unrelated individuals, were established at high rates, regardless of NT donor sex or age. NT-hESCs were pluripotent, chromosomally normal, and matched the NT patient's DNA. The major histocompatibility complex identity of each NT-hESC when compared to the patient's own showed immunological compatibility, which is important for eventual transplantation. With the generation of these NT-hESCs, evaluations of genetic and epigenetic stability can be made. Additional work remains to be done regarding the development of reliable directed differentiation and the elimination of remaining animal components. Before clinical use of these cells can occur, preclinical evidence is required to prove that transplantation of differentiated NT-hESCs can be safe, effective, and tolerated.  相似文献   
82.
Root disease pathogens, including Armillaria, are a leading cause of growth loss and tree mortality in forest ecosystems of North America. Armillaria spp. have a wide host range and can cause significant reductions in tree growth that may lead to mortality. DNA sequence comparisons and phylogenetic studies have allowed a better understanding of Armillaria spp. taxonomic diversity. Genetic sequencing has facilitated the mapping of species distributions and host associations, providing insights into Armillaria ecology. These studies can help to inform forest management and are essential in the development of disease risk maps, leading to more effective management strategies for Armillaria root disease. Armillaria surveys were conducted on publicly owned lands in North Dakota, South Dakota, and Nebraska, U.S.A. Surveyed stands consisted of riparian forests ≥0.4 hectares in area. Armillaria was found at 78 of 101 sites. A total of 57 Armillaria isolates—associated with 12 host tree species—were used for DNA sequencing of the translation elongation factor‐1 alpha (tef1) gene. Armillaria gallica was the only species identified within the study sites. Results suggest that A. gallica is a common root pathogen of hardwood trees in riparian forests of the northern Great Plains with a wider host range and geographic distribution than previously recognized.  相似文献   
83.
The blue-emissive antibody EP2-19G2 that has been elicited against trans-stilbene has unprecedented ability to produce bright luminescence and has been used as a biosensor in various applications. We show that the prolonged luminescence is not stilbene fluorescence. Instead, the emissive species is a charge-transfer excited complex of an anionic stilbene and a cationic, parallel pi-stacked tryptophan. Upon charge recombination, this complex generates exceptionally bright blue light. Complex formation is enabled by a deeply penetrating ligand-binding pocket, which in turn results from a noncanonical interface between the two variable domains of the antibody.  相似文献   
84.
An antifungal protein was isolated from Chinese cabbage (Brassica campestris L. ssp. pekinensis) by buffer-soluble extraction and two chromatographic procedures. The results of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the isolated Chinese cabbage protein was identical to human FK506-binding protein (FKBP). A cDNA encoding FKBP was isolated from a Chinese cabbage leaf cDNA library and named C-FKBP. The open reading frame of the gene encoded a 154-amino acid polypeptide. The amino acid sequence of C-FKBP exhibits striking degrees of identity with the corresponding mouse (61%), human (60%), and yeast (56%) proteins. Genomic Southern blot analyses using the full-length C-FKBP cDNA probe revealed a multigene family in the Chinese cabbage genome. The C-FKBP mRNA was highly expressed in vegetative tissues. We also analyzed the antifungal and peptidyl-prolyl cis-trans isomerase activity of recombinant C-FKBP protein expressed in Escherichia coli. This protein inhibited pathogenic fungal strains, including Candida albicans, Botrytis cinerea, Rhizoctonia solani, and Trichoderma viride, whereas it exhibited no activity against E. coli and Staphylococcus aureus. These results suggest that recombinant C-FKBP is an excellent candidate as a lead compound for the development of antifungal agents.  相似文献   
85.
Chromatographic separation of soluble proteins from rice (Oryza sativa L.) yielded a major albumin protein (16 kDa), with the DHHQVYSPGEQ sequence in the N terminus, showing antioxidant action. The rice albumin was more potent than other rice proteins in preventing Cu2+-induced low-density lipoprotein (LDL) oxidation. Additionally, it also exhibited a remarkable suppression of HOCl oxidation. In a further study, albumin inhibited Cu2+-induced oxidation of LDL in a stoichiometric manner with an EC50 value of 4.3 microM, close to that of serum albumins. Moreover, after digestion with trypsin or chymotrypsin, it maintained its antioxidant action. In an experiment to see the involvement of the N terminus in antioxidant action, a synthetic tetrapeptide, equivalent to the N terminus DHHQ, was found to inhibit Cu2+-induced LDL oxidation or degradation of apolipoprotein B, similar to that of rice albumin. In mechanistic analyses, the action of rice albumin or tetrapeptide is primarily due to the removal of Cu2+, as suggested from its inhibitory effect on Cu2+/diphenylcarbohydrazide (DPCH) complex formation. However, despite its similar inhibitory effect on Cu2+-induced oxidation of LDL, rice albumin was less effective than serum albumin in inhibiting Cu2+/DPCH complex formation, suggesting that the number of Cu2+-binding sites in rice albumin may be less than that in serum albumins. Taken together, rice albumin exerts a potent preventive action against Cu2+-induced oxidations, which is due to the Cu2+ binding by DHHQ in the N-terminal sequence. Such a role as a Cu2+ chelator would add up to the application of rice albumin protein.  相似文献   
86.
The accumulation of plastics in the soil ecosystem poses an increasing environmental concern worldwide. However, little is known about the effect of plastic concentrations on soil properties and soil biota. In this study, we investigated the effect of low-density polyethylene (LDPE) microplastics (MPs) on the chemical and microbial properties of agricultural soil using a set of microcosm experiments. The soil was incubated for 100 days with LDPE at concentrations of 0%, 0.1%, 1%, 3%, 5%, and 7% at 25°C with 70% water-holding capacity. Along with soil chemical analysis, we conducted an analysis of soil microbial properties on the first day and again after 100 days of incubation. LDPE concentrations of ≥1% significantly (p < .05) decreased the pH but increased the electrical conductivity of the soil in comparison with the control (0% LDPE at 100 days). Increasing the LDPE concentration did not affect the soil exchangeable cation content or the available Pb concentration. Firmicutes were the most abundant phyla in the soil on the first day, whereas Proteobacteria, Firmicutes and Actinobacteria became dominant in all treatments after 100 days. An increasing LDPE concentration increased the abundance of Actinobacteria and decreased Proteobacteria. Principal component analysis demonstrated that only 7% LDPE was positively correlated with Actinobacteria, indicating that higher concentrations of LDPE contributed to the growth of this phylum. The findings of this study imply that MP contamination could affect soil chemical properties and microbial activity and that these effects primarily depend on MP concentrations in soil.  相似文献   
87.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号