首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1705篇
  免费   91篇
  国内免费   3篇
林业   227篇
农学   130篇
基础科学   16篇
  375篇
综合类   110篇
农作物   155篇
水产渔业   216篇
畜牧兽医   386篇
园艺   20篇
植物保护   164篇
  2023年   16篇
  2022年   60篇
  2021年   60篇
  2020年   67篇
  2019年   65篇
  2018年   76篇
  2017年   74篇
  2016年   76篇
  2015年   60篇
  2014年   76篇
  2013年   167篇
  2012年   106篇
  2011年   113篇
  2010年   81篇
  2009年   71篇
  2008年   84篇
  2007年   32篇
  2006年   56篇
  2005年   40篇
  2004年   34篇
  2003年   41篇
  2002年   38篇
  2001年   40篇
  2000年   26篇
  1999年   22篇
  1998年   12篇
  1997年   14篇
  1996年   14篇
  1993年   4篇
  1990年   7篇
  1989年   5篇
  1988年   12篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1981年   8篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1973年   9篇
  1972年   4篇
  1971年   6篇
  1970年   6篇
  1969年   7篇
  1968年   7篇
排序方式: 共有1799条查询结果,搜索用时 15 毫秒
71.
Vitamin A deficiency in humans is a widespread health problem. Quality protein maize (QPM) is a popular food rich in lysine and tryptophan, but poor in provitamin A (proA). Here, we report the improvement of an elite QPM inbred, HKI1128Q for proA using marker‐assisted introgression of crtRB1‐favourable allele. HKI1128 was one of the parental lines of three popular hybrids in India and was converted to QPM in our earlier programme. Severe segregation distortion for crtRB1 was observed in BC1F1, BC2F1 and BC2F2. Background selection by 100 SSRs revealed mean recovery of 91.07% recurrent parent genome varying from 88.78% to 93.88%. Across years, introgressed progenies possessed higher mean β‐carotene (BC: 9.22 µg/g), β‐cryptoxanthin (BCX: 3.05 µg/g) and provitamin A (proA: 10.75 µg/g) compared to HKI1128Q (BC: 2.26 µg/g, BCX: 2.26 µg/g and proA: 3.38 µg/g). High concentration of essential amino acids, viz. lysine (mean: 0.303%) and tryptophan (0.080%) in endosperm, was also retained. Multi‐year evaluation showed that introgressed progenies possessed similar grain yield (1,759–1,879 kg/ha) with HKI1128Q (1,778 kg/ha). Introgressed progenies with higher lysine, tryptophan and proA hold immense potential as donors and parents in developing biofortified hybrids.  相似文献   
72.
An experiment was carried out at the Agronomy Field Laboratory, Bangladesh Agricultural University (BAU), Mymensingh in Old Brahmaputra Alluvial Flood Plain (AEZ-9) during December 2005 to May 2006 to examine the root growth of different rice cultivars under various establishment methods. This experiment comprised two sets of treatment (i) three methods of planting viz., dry direct seeding, wet direct seeding and transplanting, and (ii) six rice cultivars, two inbreds viz., BRRI Dhan 28 and BRRI Dhan 29, two hybrids, viz., Aalok 6201 and Sonarbangla 1 and two local improved cultivar viz., Habigonj IV and Habigonj VIII. Cultivars had more remarkable effect on different root parameters i.e. number of roots, root length, root length density, root biomass, root weight ratio and root shoot ratio of hybrid, inbred and local improved rice cultivars than method of planting. BRRI Dhan 28 performed the best for most of the parameters. At harvest, BRRI Dhan 29 showed the best rooting behavior among the cultivars. For both stages hybrid rice cultivars showed intermediate and local improved cultivars performed lower in rooting behavior. Direct seeding method performed better than transplanting method for most of the root parameters but wet direct seeding and dry direct seeding methods were identical. Interaction effect between method of planting and cultivar in most of the root parameters were insignificant. But, BRRI Dhan 28 and BRRI Dhan 29 under wet direct seeding method and Sonarbanngla 1 under transplanting method showed the best rooting performance among the other combinations.  相似文献   
73.
We report the field evaluation of second generation of transgenic cotton expressing Bacillus thuringiensis (Bt) genes cry1Ac and cry2A under CaMV 35S promoter. Sixty-five transgenic lines were grown under RCBD design. Transgenic plants exhibited inherent ability to resist target insect (p < 0.05 and 0.01). Morphological studies showed significant reduction in plant height making them favorable for breeding. Yield was significantly increased for the transgenic lines. Fiber analysis showed improved gin turn out 40% for transgenic lines in comparison to 32% for non-transformed lines. Fibre quality of transgenic lines was not affected when compared with non transgenic lines. Inheritance pattern for transgenic lines suggests the need of further studies to understand the complex molecular mechanisms for resistance management and biosafety studies to develop new Bt cotton varieties.  相似文献   
74.
为探讨南方双季超级稻对氮、磷、钾养分的吸收积累及利用规律,于2008—2010年在湖南长沙和浏阳以超级早稻陆两优996、陵两优268和超级晚稻丰源优299、天优华占为材料进行大田定位试验,比较了“三定”栽培、免耕摆栽和传统栽培条件下双季超级稻不同生育期植株体内氮、磷、钾吸收积累特点及氮肥利用率。与传统栽培相比,“三定”栽培双季超级稻生长前期(分蘖中期)氮、磷、钾的吸收量较低,幼穗分化期差异甚小,而齐穗期(早季平均为10.71、2.23和11.82 g m-2,晚季平均为12.25、2.69和16.37 g m-2)和成熟期(早季平均为13.61、3.01和13.71 g m-2,晚季平均为17.16、3.31和18.31 g m-2)较高;氮肥的偏生产力(平均为53.40 kg kg-1)、吸收利用率(平均为55.98%)、农学利用率(平均为22.27 kg kg-1)较高,分别提高29.00%、88.92%和46.67%。免耕摆栽双季超级稻不同生育时期氮、磷、钾的吸收特点与“三定”栽培相似,但其氮肥的偏生产力、吸收利用率和农学利用率(平均为50.24 kg kg-1、52.75%、19.33 kg kg-1)分别比“三定”栽培降低6.29%、6.12%和15.19%。由此可见,双季超级稻生产采用“三定”栽培技术有利于提高氮肥利用率。  相似文献   
75.
The present study assesses the effects of 5‐aminolevulinic acid (ALA, 0, 0.1, 1 and 10 mg l?1) on the growth of oilseed rape (Brassica napus L. cv. ZS758) seedlings under water‐deficit stress induced by polyethylene glycol (PEG 6000, 0 and ?0.3 MPa). Water‐deficit stress imposed negative effects on seedling growth by reducing shoot biomass, cotyledon water potential, chlorophyll content and non‐enzymatic antioxidants (glutathione and ascorbic acid) levels. On the other hand, water‐deficit stress enhanced the malondialdehyde (MDA) content, reactive oxygen species (ROS) production, enzymatic antioxidants activities, reduced/oxidized glutathione ratio (GSH/GSSG) and reduced/oxidized ascorbic acid (ASA/DHA) ratio in seedlings. Application of ALA at lower dosages (0.1 and 1 mg l?1) improved shoot weight and chlorophyll contents, and decreased MDA in rape seedlings, whereas moderately higher dosage of ALA (10 mg l?1) hampered the growth. The study also indicated that 1 mg l?1 ALA improved chlorophyll content, but reduced MDA content and ROS production significantly under water‐deficit stress. Lower dosages of ALA (0.1 and 1 mg l?1) also enhanced GSH/GSSG and ASA/DHA as compared to the seedlings under water‐deficit stress. The antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase and superoxide dismutase) enhanced their activities remarkably with 1 mg l?1 ALA treatment under water‐deficit stress. It was also revealed that 1 mg l?1 ALA treatment alone induced the expression of APX, CAT and GR substantially and under water‐deficit stress conditions ALA treatment could induce the expression of POD, CAT and GR to a certain degree. These results indicated that 0.1–1 mg l?1 ALA could enhance the water‐deficit stress tolerance of oilseed seedlings through improving the biomass accumulation, maintaining a relative high ratio of GSH/GSSG and ASA/DHA, enhancing the activities of the specific antioxidant enzymes and inducing the expression of the specific antioxidant enzyme genes.  相似文献   
76.
Summary The adaptability and productivity of cool-season food legumes (chickpea, faba bean, lentil, pea) are limited by major abiotic stresses including drought, heat, frost, chilling, waterlogging, salinity and mineral toxicities. The severity of these stresses is unpredictable in field experiments, so field trials are increasingly supplemented with controlled-environment testing and physiological screening. For drought testing, irrigation is used in dry fields and rain-out shelters in damp ones. Carbon isotope discrimination (Δ13C) is a well-established screen for drought tolerance in C3 cereal crops which is now being validated for use in grain legumes, but it is relatively expensive per sample and more economical methods include stomatal conductance and canopy temperature. Chickpea lines ICC4958 and FLIP87-59C and faba bean line ILB938 have demonstrated good drought tolerance parameters in different experiments. For frost tolerance, an efficient controlled-environment procedure involves exposing hardened pot-grown plants to sub-zero temperatures. Faba beans Cote d’Or and BPL4628 as well as lentil ILL5865 have demonstrated good freezing tolerance in such tests. Chilling-tolerance tests are more commonly conducted in the field and lentil line ILL1878 as well as derivatives of interspecific crosses between chickpea and its wild relatives have repeatedly shown good results. The timing of chilling is particularly important as temperatures which are not lethal to the plant can greatly disrupt fertilization of flowers. Salinity response can be determined using hydroponic methods with a sand or gravel substrate and rapid, efficient scoring is based on leaf symptoms. Many lines of chickpea, faba bean and lentil have shown good salinity tolerance in a single article but none has become a benchmark. Waterlogging tolerance can be evaluated using paired hydroponic systems, one oxygenated and the other de-oxygenated. The development of lysigenous cavities or aerenchyma in roots, common in warm-season legumes, is reported in pea and lentil but is not well established in chickpea or faba bean. Many stresses are associated with oxidative damage leading to changes in chlorophyll fluorescence, membrane stability and peroxidase levels. An additional factor relevant to the legumes is the response of the symbiotic nitrogen-fixing bacteria to the stress.  相似文献   
77.
The increasing concentration of cadmium (Cd) in agricultural soil has resulted in crop productivity loss. The activation of the antioxidative enzyme system and its synergy with sulphur assimilation may be required as one of the mechanisms for the alleviation of the effects of Cd. In the present study the activities of antioxidative enzymes and sulphur assimilation were studied in Cd‐treated wheat (Triticum aestivum) cultivars to assess their involvement in determining yield potential. The cultivar WH542 (low yielding type) accumulated Cd to a greater amount in both root and leaf, and also exhibited higher contents of H2O2 and thiobarbituric acid reactive substance and the activity of superoxide dismutase (EC 1.15.1.1) than cultivar PBW343 (high yielding type). The activities of other antioxidative enzymes, catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2) and glutathione peroxidase (EC 1.11.1.9), activity of ATP‐sulfurylase (EC 2.7.7.4), sulphur content, photosynthetic, growth and yield characteristics were higher in PBW343 than in WH542 in Cd treatment compared to the control. The results suggest that the efficient functioning of enzymes of the antioxidative system and sulphur assimilation helped in alleviating the effects of Cd in PBW343, protected photosynthetic ability and maintained high yielding potential of the cultivar.  相似文献   
78.
F. M. Azhar    Z. Ali    M. M. Akhtar    A. A. Khan    R. Trethowan 《Plant Breeding》2009,128(4):356-362
Global temperature is rising because of increasing concentrations of CO2 and other greenhouse gases (e.g. methane, nitrous oxide, etc.) in the atmosphere because of the excessive use of fossil fuels. High temperature causes heat stress which reduces crop productivity. The development of heat-tolerant varieties is feasible and will help mitigate the effects of climate change. Fifty-one cotton accessions were screened in heat-stressed and non-stressed conditions in the glasshouse and field. Relative cell injury percentage (RCI %), a measure of cell membrane thermostability (CMT), was used to assess heat tolerance. Heat-tolerant accessions had more stable yield and yielded more seed cotton with better quality fibre than the heat-intolerant accessions across four environments. The responses of the 51 accessions to all four environments for the measured traits were strongly associated. RCI % of the accessions and hybrids was strongly and negatively associated with yield and fibre traits. CMT was concluded to be a useful technique for identification of heat-tolerant cotton.  相似文献   
79.
Plants are sessile organisms that experience various abiotic stresses during their lifespan and try to adapt to these environmental stresses by manipulating their physiological, biochemical, cellular, and molecular mechanisms. Salinity is one of the important abiotic stress that affects the metabolism and physiology of plant cells that leads to serious damage to crops and productivity. We investigated the response of two contrasting (salt susceptible and tolerant) cultivars during saline stress by modulating its effect with the application of an important natural biostimulant panchagavya (PG). The results showed that the salinity stress greatly influenced and negatively affects the plant growth, biochemical attributes, and induces the expression of various genes in both cultivars. Furthermore, we assessed the effect of PG alone and by amending with NaCl to alleviate the saline stress which showed a significant enhancement of biochemical and physiological characteristics in both cultivars. Furthermore, we assessed the response of seven autophagy associated gene (ATG1, ATG3, ATG4, ATG6, ATG7, ATG8, and ATG9), BAX Inhibitor -1 (BI-1), Mitogen activated Protein Kinase–1 (MAPK-1), WRKY53, Catalase -1 (CAT-1), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPX) genes in rice that displayed the differential expression pattern during saline stress in both cultivars. We concluded that saline stress can be manipulated by the application of PG and positively regulate the physiological, biochemical, and gene expression response in salt-susceptible and -tolerant rice cultivars. Furthermore, the current study also suggested that salinity is a mutifactorial and multigenic response. Autophagy and programmed cell death regulated along with salinity and was helpful in adapting the tolerance against the stress condition.  相似文献   
80.
播期和密度对棉花叶柄和根系硝态氮含量的影响   总被引:2,自引:0,他引:2  
为探讨大田棉花氮代谢随播期和密度的变化规律,选用华棉3109(G.hirsutum L.)于2014年在华中农业大学试验农场,采用裂区设计:播期(月-日)(S1,05-30;S2,06-14)为主区,密度(株·m-2)(D1,7.5;D2,9.0;D3,10.5)为副区,研究了硝态氮含量在主茎叶柄和根系的分布特点。结果表明:1)随生育进程推进,叶柄和根系硝态氮含量先升高后降低,初花期最高。2)主茎叶柄硝态氮含量随叶位变化,蕾期、初花期由上而下逐渐降低,第1叶最高;盛花期逐渐增高,第1叶和第4叶最高;不同生育时期棉花叶柄硝态氮含量在叶位间的下降幅度随播期推迟而降低,随密度增加先升高后降低。3)播期和密度对不同生育时期棉花叶柄和根系硝态氮平均含量的交互作用均显著,但播期和密度主效应影响不同:见花施肥前,随推迟播期,棉花叶柄硝态氮平均含量显著降低了42.9%,根系硝态氮平均含量显著升高了12.1%,增加密度对叶柄和根系硝态氮平均含量无显著影响。见花施肥后,随播期的推迟,叶柄硝态氮平均含量无显著性变化,初花期平均为5.05 mg·g-1,盛花期平均为2.62 mg·g-1;而根系硝态氮平均含量,初花期S1S2,盛花期S1S2;随密度增加,D1,D2与D3初花期叶柄和根系硝态氮平均含量均显著降低;盛花期叶柄硝态氮平均含量呈先升高后降低趋势变化,而根系硝态氮平均含量则与初花期相反,呈显著递增趋势。综上所述,晚播高密条件下,见花一次施肥后,推迟播期不改变棉花地上部叶柄硝态氮平均含量水平,适度增加密度有利于棉花叶柄维持较高的硝态氮含量,有利于为叶片氮代谢提供充足的底物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号