首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   48篇
  国内免费   1篇
林业   31篇
农学   26篇
基础科学   2篇
  81篇
综合类   26篇
农作物   28篇
水产渔业   70篇
畜牧兽医   234篇
园艺   11篇
植物保护   75篇
  2024年   1篇
  2023年   13篇
  2022年   18篇
  2021年   40篇
  2020年   36篇
  2019年   40篇
  2018年   22篇
  2017年   29篇
  2016年   30篇
  2015年   22篇
  2014年   27篇
  2013年   24篇
  2012年   47篇
  2011年   48篇
  2010年   18篇
  2009年   30篇
  2008年   23篇
  2007年   24篇
  2006年   16篇
  2005年   19篇
  2004年   10篇
  2003年   14篇
  2002年   17篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1994年   1篇
  1992年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
排序方式: 共有584条查询结果,搜索用时 484 毫秒
11.
Camelids have many unique reproductive features that considerably differ from those of other domestic species. Females are induced ovulators with subsequent development of a corpus luteum (CL) with a short lifespan. Plasma progesterone concentration starts to increase on day 4, peaks on day 8–9 and, in non-pregnant animals, basal concentration is reached around day 10–11 post-induction of ovulation. Luteolytic pulses of prostaglandin F (PGF) are firstly detected on day 7 or 8 (approximately on day 5–6 after ovulation), with maximal luteolytic peaks observed between days 9 and 11 post-mating, in coincidence with a high endometrial expression of cyclooxygenase 2, a limiting enzyme in prostaglandins synthesis. Unlike other species, oxytocin seems not to be involved in the luteolytic process in these species. The CL is the main source of progesterone secretion, and its function is required to support pregnancy. Despite constant research efforts, aspects of reproduction and maternal recognition of pregnancy in camelids remain not fully understood. A transient decrease and subsequent recovery in plasma progesterone concentration are observed after day 9 post-mating in pregnant animals in association with a pulsatile release of PGF and a transitory decrease in CL vascularization. Thus, embryo recognition should occur between days 8 and 12 post-mating. In camels, conceptus tissues exhibit aromatizing activity with the capacity to synthesize large amounts of oestradiol. Similarly, llama blastocysts secrete oestradiol-17β during the preimplantation stage, with a higher production during the elongation period. An increase in the endometrial expression of oestrogen receptor α is also observed on day 12 post-mating. All these evidences suggest that oestrogen could be the signal released by the embryo at the time of its recognition in camelids. Besides, nearly 98% of pregnancies are carried out in the left horn. A decrease in the endometrial expression of mucin 1 and 16 genes has been reported, suggesting that these changes are crucial for successful embryo implantation; however, no differences have been observed between horns. Thus, maternal recognition of pregnancy in camelids is a particularly complex process that must occur in a concise time to allow the rescue of the CL and embryo survival.  相似文献   
12.
Summary Aluminum toxicity due to the cation Al+3 is a major factor limiting yields in acid soils. Wide genetic variability to aluminum tolerance is found in oat genotypes. The objectives of this study were to determine the number of genes controlling aluminum tolerance in oats and to verify if any detrimental effects were present of the aluminum tolerance genes on grain yield and grain quality in Al+3free soils. Aluminum tolerance was estimated as the average regrowth of the main root after exposure to toxic levels of Al+3 in a hydroponic solution under controlled conditions. The number of genes controlling that trait was estimated from the distribution of the average root regrowth frequencies in a population of 333 recombinant inbred lines (RIL's) in generations F5:6 and F5:7. The effects on grain yield and grain quality were assessed in a subpopulation of 162 RIL's chosen based on their aluminum tolerance response. Aluminum tolerance in the evaluated population was controlled by one dominant major gene with the tolerant genotypes carying Al a Al a and the sensitive ones al a al a alleles. No detrimental effects of the Al a allele on grain yield or grain quality were detected.Part of the Master of Science dissertation of the first author  相似文献   
13.
The aim of this study was to evaluate resistance to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) by antixenosis on 57 Lycopersicon esculentum Mill. accessions from the Horticultural Germplasm Bank (HGB) of Universidade Federal de Viçosa and by the three commercial cultivars (Santa Clara, Moneymaker and TOM-601) under greenhouse conditions. A randomized complete block design was used with three replications. Infestations with T. absoluta adults were performed weekly and the following characteristics were evaluated: number of small, large and total mines/leaf and % of leaves mined at days 60, 75 and 90 after planting. Low infestation occurred at days 60 and 75 but at day 90, infestation was sufficient to evaluate insect damage. Based on these data it was concluded that only accessions HGB-674 and HGB-1497 appeared to be the most promising. In addition, to determine possible chemical causes of resistance, hexane extracts were analyzed at day 90 by gas chromatography/mass spectrometry and the major peaks identified by a mass spectral database using similarity index. Nine hydrocarbons, viz., hexadecane, heptadecane, eicosane, tricosane, 2-methyltricosane, tetracosane, hexacosane, octacosane and triacontane were identified in the hexane extracts in many samples. Tricosane, tetracosane and hexacosane presented significant correlations with the leaves mined. Only tricosane presented a negative correlation with the number of small mines (r = −0.28), total number of mines (r = −0.27) and % of leaves mined (r = −0.22). However, tetracosane and hexacosane presented significant positive correlations (r = 0.25 and 0.24, respectively) with the % of leaves mined.  相似文献   
14.
The Alternaria Brown Spot, caused by Alternaria alternata, is a major fungal disease in some kinds of tangerines, tangor, mandarins and pomelos. In Brazil as well as worldwide, A. alternata can cause necrosis in fruits, branches and leaves, causing substantial profit loss. In the present research, in laboratory conditions and in the field, we evaluated the resistance to the fungus, in leaves and fruits, for 22 varieties and hybrids of tangerines. To this end, we evaluated genotypes belonging to the Germplasm Bank of the Estação Experimental de Citricultura de Bebedouro. The resistant genetic materials (found in leaves and fruits) represented four varieties of clementines (Citrus clementina); six varieties of mandarins (two belonging to C. reticulata, two to C. tangerina, one to C. deliciosa and one to C. nobilis); one tangelo (C. tangerina × C. paradisi); two mandarin hybrids (one resulting from crossing C. nobilis × C. deliciosa and the other from crossing C. clementina × C. reticulata); one tangor hybrid (C. clementina) and two satsuma hybrids (C. unshiu × C. deliciosa). We also determined a relation between the inoculation of leaves and fruits. The resistance and susceptibility following inoculation in leaves and fruits supports a relationship between these organs and the physiological responses observed for the evaluated genotypes.  相似文献   
15.
16.
Jaagsiekte sheep retrovirus (JSRV) causes ovine pulmonary adenocarcinoma. JSRV can be transmitted via infected colostrum or milk, which contain somatic cells (SCs) harboring JSRV provirus. Nevertheless, the cell types involved in this form of transmission and the involvement of the mammary gland remain unknown. We separated adherent cells (macrophages and monocytes) by plastic adherence, and lymphocytes (CD4+ and CD8+ T cells, and B cells) by flow cytometry, from SCs in milk samples from 12 naturally infected, PCR blood test JSRV–positive, subclinical ewes. These cell populations were tested by PCR to detect JSRV provirus. The ewes were euthanized, and mammary gland samples were analyzed immunohistochemically to detect JSRV surface protein. We did not detect JSRV provirus in any milk lymphocyte population, but milk adherent cells were positive in 3 of 12 sheep, suggesting a potential major role of this population in the lactogenic transmission of JSRV. Immunohistochemistry did not reveal positive results in mammary epithelial cells, pointing to a lack of participation of the mammary gland in the biological cycle of JSRV and reducing the probability of excretion of free viral particles in colostrum or milk.  相似文献   
17.
18.
19.
Virulence of Streptococccus suis capsular type 2 strain 89-1591 has been controversial in literature. A standardized experimental model with specific-pathogen free piglets was used for a new evaluation of this strain. Twenty-nine piglets were allotted in 4 separated groups. Group 1 consisted of negative control animals which received broth medium. Groups 2, 3, and 4 were intravenously challenged with 2 mL of S. suis, strains 1330, 89-1591, and 166', respectively. The strain 1330 is a recognized avirulent Canadian strain. The strain 166' is a reference French virulent isolate. Pigs inoculated with strain 1330 did not present clinical signs of a S. suis infection. Contamination in organs and bacterial blood circulation were rare and lesions were almost non-existent. Infection of pigs with S. suis strain 89-1591 (group 3) and 166' (group 4) caused severe clinical problems, animals infected with S. suis 166' were the most affected. Pigs presented with clinical signs such as high body temperature, lameness, nervous symptoms, and even mortality. Lesions associated with S. suis were numerous for both strains, but more evident in animals of group 4. It can be concluded that S. suis strain 89-1591 is virulent, although its virulence seems to be lower than that of the French strain. Results of an experimental infection with strain 89-1591 may depend on different factors such as the route of inoculation and the immunological status of the animals used. Using conventional animals, with an unknown status regarding previous S. suis infections, equivocal results may be obtained, and this may explain differences reported by some authors with the same strain.  相似文献   
20.
The objective was to determine luteinizing hormone (LH) secretion and follicular dynamics in cattle following administration of 3 gonadorelin formulations that are commercially available in Canada. In experiment 1, nonlactating Holstein cows (n = 4 per group) were randomly assigned to receive 100 micrograms gonadorelin diacetate tetrahydrate, intramuscularly (C; Cystorelin, or FE; Fertagyl). Blood samples (for LH analysis) were collected 0, 1, 2, and 4 hours after treatment. In experiment 2, nonlactating Holstein cows (n = 10 per group) were randomly allocated to receive 100 micrograms gonadorelin, intramuscularly as follows: 2 mL of C; 1 mL of FE; or 2 mL of Factrel (FA, gonadorelin hydrochloride). Gonadorelin treatment was done on days 6 or 7 after ovulation and blood samples for LH analysis were collected at 0, 1, 2, 4, and 6 hours after treatment. Ovaries were examined by ultrasonography, twice daily, to detect ovulation. A replicate was conducted using only C (n = 10) or FE (n = 10); blood samples were collected at 0, 1, 2, 3, and 4 hours. In experiment 3, beef heifers (n = 10 per group) were randomly assigned to receive 1 of 3 GnRH gonadorelin treatments (as in the first phase of experiment 2) on days 6 or 7 after ovulation and blood samples were collected at 0, 0.5, 1, 1.5, 2, and 4 hours. In experiments 2 and 3, both mean and mean peak plasma LH concentrations were higher (P < 0.05) in cattle treated with C. The proportion of dominant follicles that ovulated was higher (P < 0.02) in Holstein cows treated with C than in those treated with FE or FA (18/19, 11/19, and 4/7, respectively), but there was no significant difference among the products in beef heifers (6/10, 6/10, and 4/10, respectively). No significant differences were found in the interval from treatment to the emergence of the next follicular wave. In summary, C induced a greater LH release and this resulted in a higher ovulatory rate in Holstein cows but not in beef heifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号