Sclerotinia sclerotiorum infections on sunflower capitula produce white rot, one of the most dangerous diseases sunflower bears in all humid areas.
Therefore, disease quantification on developed genetic materials is a very important action in sunflower breeding. Given the
horizontal type of resistance these evaluations should be made in different environments. Several hybrids obtained after crossing
seven female × seven male sunflower inbred lines in a factorial mating design were evaluated for resistance to white rot in
two locations in the southeast of the province of Buenos Aires, Argentina. Disease incidence and the symptom appearance index
indicated significant genotypic effects and genotype × environment (G × E) interactions. Genotypic effects were a greater
source of variance than the G × E interaction effects. The G × E interactions only represented changes in magnitude. These
results were used to identify the best genotypes for both resistance factors. Four hybrids showed low disease incidence values
under both artificial and natural infections, of which only two had high values of the symptom appearance index at both locations.
These hybrids are considered to have adequate resistance attributes for the ascosporic penetration and the mycelium extension
in the capitulum tissue and could therefore be sown in the province of Buenos Aires without increasing risks of S. sclerotiorum attacks. 相似文献
In this paper we present the Mexican inventory of greenhouse gas (GHG) emissions from the land-use sector. It involved integration of forest inventory, land-use and soil data in a GIS to estimate the net flux of GHG between 1993 and 2002. 相似文献
A sequential injection system for the automatic determination of glycerol in wine and beer was developed. The method is based on the rate of formation of NADH from the reaction of glycerol and NAD+ catalyzed by the enzyme glycerol dehydrogenase in solution. The determination of glycerol was performed between 0.3 and 3.0 mmol L(-1) (0.028 and 0.276 g L(-1)), and good repeatability was attained (rsd < 3.6%, n = 5) for all samples tested. The determination rate was 54 h(-1), the reagent consumption was only 0.75 micromol of NAD+ and 5.4 ng of enzyme per assay, and the waste production was 2.12 mL per assay. Results obtained for samples were in agreement with those obtained with the batch enzymatic method. 相似文献
The aim of this study was to realize whether soil mulching, with different plastic mulch colors, is a suitable practice under shade house (SH) conditions for the culture of cucumber. To do so, cucumber was cultured mulched or not with black, blue, red or white-on-black plastic films under SH, and contrasted against mulched cucumber in open field (OF). Red mulch produced the highest shoot dry weight per plant and bare soil the lowest. However, it was the white mulch which produced the highest commercial yield per plant. Contrastingly, bare soil plants produced the lowest commercial yield. SH plants two folded photosynthetic rates compared to OF plants. Mulch color mainly impacted leaf phosphorus (P) and magnesium (Mg) content while the SH affected nitrogen (K), calcium (Ca) and magnesium (Mg). Our results confirm that soil mulching, and shading positively impact the cucumber yield and quality but also show that soil mulching under SH enhances cucumber crop. 相似文献
Our main goal was to investigate if robust chemical fingerprints could be developed for three Argentinean red wines based on organic, inorganic, and isotopic patterns, in relation to the regional soil composition. Soils and wines from three regions (Mendoza, San Juan, and Co?rdoba) and three varieties (Cabernet Sauvignon, Malbec, and Syrah) were collected. The phenolic profile was determined by HPLC-MS/MS and multielemental composition by ICP-MS; (87)Sr/(86)Sr and δ(13)C were determined by TIMS and IRMS, respectively. Chemometrics allowed robust differentiation between regions, wine varieties, and the same variety from different regions. Among phenolic compounds, resveratrol concentration was the most useful marker for wine differentiation, whereas Mg, K/Rb, Ca/Sr, and (87)Sr/(86)Sr were the main inorganic and isotopic parameters selected. Generalized Procrustes analysis (GPA) using two studied matrices (wine and soil) shows consensus between them and clear differences between studied areas. Finally, we applied a canonical correlation analysis, demonstrating significant correlation (r = 0.99; p < 0.001) between soil and wine composition. To our knowledge this is the first report combining independent variables, constructing a fingerprint including elemental composition, isotopic, and polyphenol patterns to differentiate wines, matching part of this fingerprint with the soil provenance. 相似文献
The ecological literature has documented the effects of plant hybridization on phenotypic variation, and dominant, intermediate, or novel morphological, chemical and physiological traits in hybrids. It is important to understand the ecological consequences of hybridization by evaluating their impact on phenotypic expression of functional traits. We evaluated the relationship between genetic diversity of Quercus laurina and functional foliar traits along an oak diversity gradient. We selected five study sites that represent an oak diversity gradient where Q. laurina is present. Using chloroplast and nuclear microsatellites, we evaluated genetic diversity, measured functional foliar traits of Q. laurina in each site and assessed the effects of local climate variables on the oak community and functional traits. We found a greater abundance of Q. laurina in all study sites. We did not find a relationship between the number of accompanying red oak species and the population genetic diversity in Q. laurina, but higher genetic diversity was found in all study sites in comparison with European oak species. Sites with more oak species had more variation of foliar functional traits. Our results do not support the hypothesis that predicts higher levels of genetic diversity of Q. laurina in communities with greater oak diversity from the same section, but we demonstrated an increase in the foliar functional traits of Q. laurina associated with oak richness and climate variables. We highlight the need to consider environmental and ecological variables linkages as regulatory mechanisms of the phenotypic plasticity expressed in changes of some functional attributes of oaks.
The textile industries are characterized as one of the biggest consumers of potable water and chemical products throughout its process, being responsible for the elevated wastewater generation with intense coloration and wide polluting potential. In this context, the present study proposes the development and application of a new coagulant material for textile wastewater treatment. The proposed coagulant (α-Fe2O3-MO) was composed by hematite nanoparticles (α-Fe2O3) obtained by a simple non-pollutant methodology, associated with Moringa oleifera (MO) seeds saline extract compounds. Coagulation/flocculation (CF) efficiency was evaluated by removal of physicochemical parameters such as apparent color, turbidity, and compounds with absorption at UV254nm (UV254nm) through CF tests carried out on Jar test equipment and sedimentation carried out in the presence and absence of external magnetic field (600 k Am?1). Kinetics sedimentation was from 0 to 90 min. The use of this new coagulant allowed the removal of 92.37% for apparent color, 91.43% for turbidity, and 46.09% for UV254nm, indicating that the proposed coagulant association was efficient in the treatment of this type of wastewater under external magnetic field with only 10 min of sedimentation. In addition, the resulting sludge from CF process was tested as base material for a new coagulant synthesis, demonstrating great reuse potential. Therefore, the new proposed coagulant, composed of α-Fe2O3 and the compounds present in the seed extract of MO, has applicability for textile wastewater treatment demonstrating high removal rate for all evaluated parameters with cost reduction in the proposed treatment for this wastewater. 相似文献
Enzymatic treatments using noncommercial enzymes as a means to the improve the extraction of carotenoids and capsaicinoids from chili fruits are explored in this study. The results show that it is possible to obtain chili fruit powder with a higher concentration of both capsaicinoids and carotenoids than previously reported for similar processes. Furthermore, extraction yields above 96% for carotenoids and 85% for capsaicinoids as separate fractions can be achieved using a sequential and selective two-stage extraction. Evidence is presented demonstrating that the content and extraction yield depend directly on the extent of the enzymatic hydrolysis of chili cell walls, and higher yields are obtained when the sample is completely hydrolyzed. The enzymatic treatment described here is a promising alternative to current industrial practices, and it improves the extraction of carotenoids and capsaicinoids from chili fruits. 相似文献
In implantation trials carried out with Prosopis chilensis and Prosopis flexuosa, the following variables were considered: implantation time (December and March), implantation technique (direct seeding and seedling transplantation) and age of the seedlings at the time of transplantation (60, 105 and 150 days). Survival was evaluated for more than 9 months after implantation and trials were repeated in 3 consecutive years.
Results from both species were similar and they show that survival after transplantation was higher (60–80%) than from direct seeding (35–45%). Survival from transplantation was independent of the size and age of the seedlings and it was less affected by climatic conditions than direct field sowing. Survival from direct seeding was higher in March than in December. The best time for either implantation alternative would be the end of the summer or beginning of fall, when climatic conditions increase the probability of seedling survival. 相似文献