首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   15篇
  国内免费   3篇
林业   26篇
农学   18篇
基础科学   3篇
  194篇
综合类   34篇
农作物   18篇
水产渔业   20篇
畜牧兽医   20篇
园艺   7篇
植物保护   17篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   9篇
  2018年   12篇
  2017年   11篇
  2016年   16篇
  2015年   9篇
  2014年   8篇
  2013年   33篇
  2012年   5篇
  2011年   8篇
  2010年   10篇
  2009年   8篇
  2008年   24篇
  2007年   10篇
  2006年   5篇
  2005年   16篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   9篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
31.
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
32.
The effects of 6 years of continuous cultivation in 12 consecutive crops of maize (Zea mays) on changes in the physical and chemical properties of an Alfisol were investigated for two mechanized tillage systems imposed on twin watersheds of about 5 ha each. The tillage methods were no-tillage, with herbicides for weed control, and conventional plowing and harrowing. The soil organic matter content of the 0- to 10-cm layer of the no-tillage watershed increased by 7%, and that of the plowed watershed decreased by 72%. Soil pH declined by 0.3 and 1.7 units in no-tillage and plowed watersheds, respectively. As a consequence of pH changes, exchangeable cations declined with continuous cultivation, regardless of the tillage method, although the rate of decline was more drastic in the plowed than in the no-tillage watershed.Continuous mechanized cultivation substantially decreased infiltration rate. Soil compaction was more severe at the tractor's turning points along the plot's border. The results are discussed in terms of tillage needs and implications for mechanized farming in the tropics.  相似文献   
33.
R. Lal 《Geoderma》1976,16(5):419-431
Erosion-induced changes in the physical characteristics of the surface soil under different soil and crop management treatments were monitored over a period of two years. These studies were conducted on field runoff plots established on natural slopes of 1, 5, 10 and 15%. The soil and crop management treatments consisted of bare-fallow, maize-maize (plowed and mulched), maize-maize (plowed), maize-cowpeas (no-till) and cowpeas-maize (plowed).Soil erosion increased the gravel content and decreased the silt and clay contents of the surface horizon. The moisture retention capacity of the surface soil decreased significantly. The infiltration rate decreased from 3.5 cm/min on all plots in February 1972 to 0.2 cm/min under bare-fallow, to 0.6 cm/min under maize-maize (mulch), to 1.5 cm/min under maize-cowpeas (no-till) and to 0.1 cm/min under maize-maize (plowed) in February 1974. Maize yields on the mulch and no-till treatments were maintained while those on plowed plots declined. Artificial soil removal resulted in significant reductions of maize and cowpea yields.  相似文献   
34.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   
35.
The species Cymbopogon winterianus Jowitt is believed to have originated from the well-known species Cymbopogon nardus, type Maha Pengiri, referred to as Ceylonese (Sri Lankan) commercial citronella. Cymbopogon winterianus Jowitt was named after Winter, who raised its population as a separate species in the 19th century. C. winterianus was introduced into Indonesia and became commercially known as the Javanese citronella. The Javanese type C. winterianus material was introduced into India for the commercial cultivation of this crop during 1959. Varieties of this species have been developed later by the use of breeding procedures from the same introduced material. A comparative analysis of yields of herb, oil percentage and oil constituents for eight prevalent C. winterianus cultivars comparing them between themselves as well as against an accession of C. nardus has been carried out. All these accessions were analyzed at the molecular level for the similarity and genetic distances through RAPD profiling, using 20 random primers. More than 50% divergence was observed for all the C. winterianus accessions in relation to C. nardus accession CN2. The clustering based on the similarity matrices showed a major cluster of six accessions, consisting of two sub-clusters. The accession C. nardus CN2 got carved out along with two C. winterianus accessions, CW2 and CW6. On the other hand, the accessions CW2 and CW6 demonstrated distinct identities compared to CN2 at the DNA level.  相似文献   
36.
Increase in atmospheric concentration of CO2 from 285 parts per million by volume (ppmv) in 1850 to 370 ppm in 2000 is attributed to emissions of 270 ± 30 Pg carbon (C) from fossil fuel combustion and 136 ± 55 Pg C by land‐use change. Present levels of anthropogenic emissions involve 6·3 Pg C by fossil fuel emissions and 1·8 Pg C by land‐use change. Out of the historic loss of terrestrial C pool of 136 ± 55 Pg, 78 ± 12 Pg is due to depletion of soil organic carbon (SOC) pool comprising 26 ± 9 Pg due to accelerated soil erosion. A large proportion of the historic SOC lost can be resequestered by enhancing the SOC pool through converting to an appropriate land use and adopting recommended management practices (RMPs). The strategy is to return biomass to the soil in excess of the mineralization capacity through restoration of degraded/desertified soils and intensification of agricultural and forestry lands. Technological options for agricultural intensification include conservation tillage and residue mulching, integrated nutrient management, crop rotations involving cover crops, practices which enhance the efficiency of water, plant nutrients and energy use, improved pasture and tree species, controlled grazing, and judicious use of inptus. The potential of SOC sequestration is estimated at 1–2 Pg C yr−1 for the world, 0·3–0·6 Pg C yr−1 for Asia, 0·2–0·5 Pg C yr−1 for Africa and 0·1–0·3 Pg C yr−1 for North and Central America and South America, 0·1–0·3 Pg C yr−1 for Europe and 0·1–0·2 Pg C yr−1 for Oceania. Soil C sequestration is a win–win strategy; it enhances productivity, improves environment moderation capacity, and mitigates global warming. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
37.
Many questions have surfaced regarding long-term impacts of land-use and cultivation system on soil carbon (C) sequestration. The experiment was conducted at Ohio Agricultural Research and Development Center. Only minor variations of soil organic carbon (SOC) and nitrogen (N) fractions with depth under plow tillage (PT). The SOC, total nitrogen (TN), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) concentrations were higher under grassland and forestland in the top 0–15 cm depth than arable soils. No-tillage (NT) also increased SOC and N fractions concentrations in the surface soils than PT. Compared to arable, grass and forest could significantly improve proportions of MBC and MBN, and reduce proportions of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). NT and forest also increased the ratio of SOC/TN, MBC/MBN, and DOC/DON. Overall, grass and forest provided more labile C and improved C sequestration than arable. So did NT under arable land-use.  相似文献   
38.
We investigated the effects of Arbuscular Mycorrhiza (AM) fungi and various phosphorus (P) levels on the distribution and availability of P in dominant soils of Bihar, India. Potassium chloride (KCl)-P (labile P), sodium hydroxide (NaOH)-P (Fe-Al-bound P), hydrochloric acid (HCl)-P (Ca-bound P), and residual P (Res-P) fractions were analyzed in the soils under maize plant. Ca-bound P was the most abundant P fraction in the alkaline soils (65% of the total P) followed by neutral soil (35% of the total P), whereas it was less abundant (<4%) in the acidic soil type. Fe-Al-bound P was found to be highest for acidic soil (65% of the total P). Soils under the inoculation with Glomus mossae and control gave the highest and lowest values (15.63 mg kg?1 and 10.74 mg kg?1 respectively) for the labile fraction which was similar to the organically bound residual fractions of P (200.17 mg kg?1 and 193.66 mg kg?1 respectively. Inoculation of the soils with AM fungi leads to the redistribution of P fractions in different soils which consequently helps in improvement of available P in soil conducive for plant uptake.  相似文献   
39.
In this study we report results on the soil organic carbon (SOC) pool (0–50 cm) from a chrono-sequence of dry tropical forest (dTf) of increasing age and a yearly burned ancient pasture in the “Sector Santa Rosa” at the “Área de Conservación Guanacaste” (ACG) in northwestern Costa Rica, where intense human induced land-use modifications has occurred during the past century. The effects of land conversion on soil organic carbon (SOC) have mainly been conducted in the Atlantic humid forests while overlooking dTfs. We quantified the depth distribution of SOC concentration down to 50-cm and in physically separated mineral soil fractions, as these data are scanty from the dTf. Additional objectives were to identify the relationship with selected soil physical and chemical properties, including stabilized SOC fractions by means of multivariate ordination methods. Statistically significant differences were found for the main fixed factor ecosystem for all soil variables analyzed (ANOVA). SOC and N concentrations were significantly higher in the oldest dTf compared to the other dTfs. Soil physical properties like aggregate size distribution and bulk density changed with depth, and varied significantly among the three dTf stands sampled. The multivariate analysis, i.e. between-within class principal component analysis (PCA), revealed a significant ordination of dTfs (P < 0.0001). The SOC concentration decreased in particle size fractions of < 200 μm aggregates with increasing soil depth. The lowest and highest C concentrations were obtained in the fine sand (105–200 μm) and clay + silt (< 20 μm) fractions, respectively. Mineral-associated and stable SOC pool increased with depth, and poorly crystalline Fe oxides and ferrihydrite were the most important minerals for SOC stabilization at 40–50 cm depth. The highest SOC pool was found in the old-growth and > 80 years-old dTfs, i.e., 228.9 and 150.3 Mg C ha− 1, respectively, values similar to those obtained in the Atlantic humid forests of Costa Rica. Comparatively to other studies, soils under dTf at Santa Rosa store a considerable amount of SOC with potentially large CO2 emissions if this ecosystem is not preserved.  相似文献   
40.
Adoption of input‐responsive varieties enhanced food production during the second half of the 20th century. However, even bigger challenges lie ahead because of the growing societal demands. For example, the global population of 7.2 billion in 2013 is projected to reach 9.2 billion by 2050 and stabilize at 10 billion by 2100. The growing and increasingly affluent population, with preference towards more and more meat‐based diet, is likely to jeopardize the finite, fragile, and dwindling soil and water resources which are already under great stress in densely populated countries in Asia and elsewhere. Economic growth and increase in gross domestic product also lead to generation of waste or by‐products, along with contamination and eutrophication of water resources. International trade in food/feed products also involves transfer of virtual water, which is a serious issue when water‐scarce countries export virtual water to water‐endowed countries. The problem is confounded by the present and future climate change driven by the growing energy demands of the carbon civilization. Thus, adaptation to climate change represents both a threat and an opportunity for sustainable development. Adaptive strategies must be sustainable socially and environmentally and advance the Millennium Development Goals, while buffering agroecosystems against extreme climate events (e.g., pedologic, agronomic, and ecologic drought). Thus, recognizing and addressing the water‐soil‐waste nexus is important to achieving climate‐strategic agriculture. Sustainable intensification of agroecosystems, producing more per unit consumption of essential resources, must consider judicious management of hydrological and biogeochemical cycles (C, N, P, S). The soil C pool must be managed and enhanced to offset anthropogenic emissions, and mitigate/adapt to the climate change. The pace of adoption of recommended land use and soil‐/plant‐/animal‐management practices can be kept at par with advances in scientific knowledge through continuous dialogue between scientists on the one hand and policy makers / land managers on the other to translate research data into policy and action plans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号