首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  26篇
  2019年   2篇
  2018年   8篇
  2017年   5篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
11.
The effect of natural and technogenic factors on the mobility and transformation of metal compounds was studied from an analysis of the fractional-group composition of Cu, Zn, and Pb compounds in the soils of areas adjacent to the Novocherkassk power station. Changes in the composition of Cu, Zn, and Pb compounds in the soils of technogenic landscapes were estimated. The effect of aerosol technogenic emissions on the mobility of metal compounds was revealed; a higher metal mobility was found in soils with low buffering capacity. Common and specific features of the formation of Cu, Zn, and Pb compounds in soils were determined. The role of individual soil components in the retention of metals in clean and contaminated soils was established.  相似文献   
12.
Natural and anthropogenic factors determining the distribution and accumulation features of Pb, Cu, Zn, Cr, Ni, Cd, Mn, and As in the soil–plant system of the Don River estuary and the northern and southern Russian coasts of Taganrog Bay estuary have been studied. High mobility of Cu, Zn, Pb, and Cd has been revealed in alluvial soils. This is confirmed by the significant bioavailability of Cu, Zn, and, to a lesser degree, Cd and the technophily of Pb, which are accumulated in tissues of macrophytic plants. Statistically significant positive correlations have been found between the mobile forms of Cu, Zn, Cd, and Mn in the soil and the accumulation of metals in plants. Impact zones with increased metal contents in aquatic ecosystems can be revealed by bioindication from the morphofunctional parameters of macrophytic plants (with Typha L. as an example).  相似文献   
13.
Purpose

The effect of Cu, Zn, and Pb high rates on the physical properties and organic matter of Haplic Chernozem (Clayic) (A1 horizon 0–20 cm) under model experimental conditions was studied.

Materials and methods

In a model experiment, soil samples of Haplic Chernozem (Clayic) were artificially contaminated with 2000 mg/kg of Cu, Zn, and Pb acetates added separately. The particle-size fraction, the microaggregates distribution, the structural status, the total content and fractional and group composition of organic matter, physico-mechanical properties were determined in soil without metals and soil contaminated with metals.

Results and discussion

At the soil contamination with Cu, Zn, and Pb, the content of organo-mineral colloids increased, which results to the increasing of the clay fraction content by 4.5% compared to the control. The analysis of the microaggregate size composition of the studied soil shows that the content of coarser aggregates (1–0.25 mm) increases and the content of finer (0.05–0.001 mm) aggregates decreases after the addition of HMs and correspond to the HMs series: Cu → Zn → Pb. A significant decrease in the coefficient of water stability in the control from 3.0 to 1.4–1.5 in the contaminated treatments. The structural status (estimated from total agronomically valuable aggregates) changes from excellent to good. The addition of Cu, Zn, and Pb to the soil affects the quantitative composition of organic matter. The contents of free and sesquioxide-bound humic acids and free fulvic acids increased. The contamination with Zn and Pb causes the aliphatization of organic matter.

Conclusions

Under conditions of model experiment, the contamination of Haplic Chernozem (Clayic) with high rates of Cu, Zn, and Pb leads to changes of the microaggregates distribution, the structural status, and the qualitative composition of organic matter.

  相似文献   
14.
Combined approach for fractioning metal compounds in soils   总被引:1,自引:1,他引:0  
A combined approach for fractioning metal compounds in soils on the basis of sequential and parallel extractions is proposed. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. The contents of firmly and loosely bound metal compounds that are presumably fixed by the particular soil components (organic substances, carbonates, and silicate and nonsilicate minerals) have been determined.  相似文献   
15.
The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by soils and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and polyelement contamination decreased with the decreasing proportion of fine fractions in the soil. The adsorption capacity of the Lower Don chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem ∼ clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions (C max and k), the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem > loamy chernozem > loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by soils and their particlesize fractions showed that the extensive adsorption characteristic, namely, the maximum adsorption (C max), was a less sensitive parameter characterizing the soil than the intensive characteristic of the process—the adsorption equilibrium constant (k).  相似文献   
16.

Purpose

The optimization of benzo[a]pyrene extraction conditions by subcritical water extraction method from soils is the purpose of the research. The optimal conditions for benzo[a]pyrene recovery are 30-min extraction by water in a special steel cartridge at 250 °C and 100 atm.

Materials and methods

Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Station emissions. Monitoring plots were established at different distances from the Novocherkassk Power Station (NPS; 1.0–20.0 km).

Results and discussion

It was shown that the use of water in subcritical state as a solvent for benzo[a]pyrene extraction from soil allows to avoid large volumes of organic solvents and to decrease the time of sample preparation. It is shown that the maximum benzo[a]pyrene maintenance was observed in soils of the monitoring plots located most close (to 5 km) to a pollution source in the area of the prevailing direction of a wind rose. Dynamics of pollutant accumulation in soils depend on number of Novocherkassk state district power station emissions.

Conclusions

The method of benzo[a]pyrene subcritical water extraction from soil was developed and approbated during long-term monitoring researches of technogenic polluted territories. The optimum conditions for benzo[a]pyrene extraction from soil have been determined: the soil is treating by subcritical water at 250 °C and 100 atm of pressure for 30 min. Trends in the accumulation of benzo[a]pyrene in soil zones of the thermal power plant influence have been researched over a 5-year period of monitoring observations by subcritical water extraction method. Benzo[a]pyrene accumulation in soils depends on the technogenic emissions to the atmosphere from Novocherkassk power station and on the soil physical and chemical properties.
  相似文献   
17.
Purpose

It is very important to obtain the information on the soils capacity to immobilize HMs and distribute them among soil components. The aim of this work was to study the fractional composition of Cu compounds in Haplic chernozem under model contamination conditions using different fractionation methods.

Materials and methods

The fractional composition of copper compounds in Haplic Chernozem artificially contaminated with copper acetate has been studied under model experimental conditions. General regularities and differences in the distribution of Cu forms in soils at the use of sequential fractionation by the Miller method modified by Berti and Jacobs (1996) and the Tessier method (Tessier et al. 1979) are revealed.

Results and discussion

The differences are related to the metal affinity for specific carrier phases, as well as to the selectivity and extraction capacity of the reagents used in these methods. A significant increase in the most mobile exchangeable Cu fraction is observed in contaminated soils. Aluminosilicates and soil organic matter make the largest contribution to the adsorption and retention of Cu.

Conclusions

The Tessier method is more suitable for the separation of the total technogenic component from contaminated soils. The Miller method is more informative at the determination of loosely bound HM compounds because of the use of weaker extractants.

  相似文献   
18.
Purpose

The purpose of this paper is to study the responses of soil biological parameters as indicator of ecological status on PAH-contaminated soil.

Materials and methods

Studies are conducted on the soils and natural grassy vegetation of monitoring plots subjected to Novocherkassk power station (NPS) emissions. Monitoring plots were established at different distances from the NPS (1.0–20.0 km).

Results and discussion

The level of polycyclic aromatic hydrocarbons (PAHs) around NPS is the highest at the monitoring plot located at distance 1.6 km to the northwest through the prevailing wind direction. Gradually, decrease of PAHs was observed while increasing the distance from the NPS through the prevailing wind direction. Calculation of correlations between PAH level and biological activity parameters of soils showed lack of dependence with total and every PAH content in all 12 studied monitoring plots. The most significant correlations were found between PAH content and enzyme activity in the monitoring plots situated through the prevailing wind direction from NPS.

Conclusions

The main pollution source in the studied area is NPS. It was found that contamination of soil by PAHs has a direct dependence on the activity of all biological communities in chernozems, as well as the activities of dehydrogenase and the phytotoxicity of soils. Inverse correlations have been revealed between the PAH contamination and abundance of soil bacteria.

  相似文献   
19.

Purpose

The aim of this work was to select and assess the efficiency of different amendments applied to ordinary chernozems artificially contaminated with heavy metals (Zn and Pb).

Materials and methods

The effect of different amendments on ordinary chernozem contaminated with Zn and Pb acetate salts was studied in a long-term 3-year field experiment. Glauconite, chalk, manure, and their combinations were chosen as ameliorating agents. Spring barley (Hordeum sativum) was used as test culture for three successive years. The heavy metal concentration in all the soil samples decomposed by HF?+?HClO4 was determined by atomic absorption spectrophotometry (AAS). One normal concentration of CH3COONH4 at pH 4.8 was used to estimate the actual mobility of metals. The compounds of heavy metals extracted by 1 N HCl are regarded as mobile compounds. The concentration of metals in the plants was determined using the dry combustion in a mixture of HNO3 and HCl at 450 °C. The content of heavy metals in extracts from soil and plant samples was determined by AAS.

Results and discussion

The content of weakly bound metal compounds increased upon the contamination of the soil with Pb and Zn salts, which led to a low quality of barley grown in these soils. Metal concentrations in the barley grain exceeded the maximum permissible concentrations (MPCs). The content of Zn and Pb in grains was higher than the MPC for at least 3 years after the soil pollution. The application of amendments significantly decreased the mobility of metals, and the simultaneous application of chalk and manure was most significant. The share of weakly bound metal compounds in the contaminated soils decreased to the level typical for the clean soils or even below.

Conclusions

The combined application of chalk and manure to Zn- and Pb-contaminated ordinary chernozems decreased the content of weakly bound metal compounds in the soil and lowered their concentrations in barley plants. The polyfunctional properties of the soil components with respect to their capacity for metal fixation were established. The decrease in the intensity of Zn accumulation in grains of barley shows the presence of a barrier at the root–stalk and stalk–grain interfaces.
  相似文献   
20.
Purpose

The aim of this work was to study the level and degree of mobility of heavy metals in the soil–plant system and to perform bioindication observations in the Don River estuarine region and the Russian sector of the Taganrog Bay coast.

Materials and methods

The objects of the study included samples of zonal soils (chernozem) and intrazonal soils (alluvial meadow and alluvial-stratified soils, Solonchak, sandy primitive soil) from monitoring stations of the Don river estuarine region and the Taganrog Bay coast, as well as their higher plants: Phragmites australis Cav., Typha angustifolia L., Carex riparia Curtis, Cichorium intybus L., Bolboschoenus maritimus L. Palla, and Rumex confertus Willd. The total concentrations of Mn, Ni, Cd, Cu, Zn, Pb, and Cr in the soils were determined by X-ray fluorescent scanning spectrometer. The concentration of heavy metal mobile forms exchangeable, complex compounds, and acid-soluble metal were extracted using the following reagents: 1 N NH4Ac, pH 4.8; 1 % EDTA in NH4Ac, pH 4.8; 1 N HCl, respectively. Heavy metals in plants were prepared for analysis by dry combustion at 450 °C. The heavy metal concentration in extracts from plants and soils was determined by AAS.

Results and discussion

The total contents of heavy metals in the soil may be described with a successively decreasing series: Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Pb?>?As?>?Cd. The total concentrations of As, Cd, and Zn in the soil exceed the maximum permissible concentrations levels. Contamination of alluvial soils in the estuarine zone with mobile Сu, Zn, Pb, and Cd has been revealed, which is confirmed by the high bioavailability of Cu and Zn and, to a lesser degree, Cd and Pb accumulating in the tissues of macrophytic plants. Data on the translocation of elements to plant organs have showed their predominant accumulation in the roots. Bioindication by the morphofunctional parameters of macrophytic plants (with a Typha L. species as an example) can be used for revealing the existence of impact zones with elevated contents of metals in aquatic ecosystems.

Conclusions

The results revealed that increased content of Zn, Pb, Cu, Ni, and As in soil have anthropogenic sources. The high content of Cr in the soils is related to the lithogenic factor and, hence, has a natural source.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号