首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
农学   4篇
基础科学   5篇
  7篇
综合类   2篇
  2013年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1984年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
11.
The influence of land use on runoff and soil loss was assessed on two small watersheds in the Eastern Caribbean island of St Lucia, under contrasting land management regimes. The data generated from these watersheds revealed that the soil losses from an intensively cultivated agricultural watershed were 20‐times higher in magnitude than that of a forested watershed both for peak rainfall event and for total duration of analysis. This was due to higher surface runoff rates and exposure of soil to direct raindrop impact within cultivated areas. Whereas the forest canopy cover in combination with higher infiltration capacities of the forested land reduced the erosive runoff from the forest watershed and thus the soil loss. Moreover, the energy intensities of large storms in excess of 40 mm were estimated and found to range between 400 MJ mm ha−1 h−1 and 1834 MJ mm ha−1 h−1. 1
  • 1 Megajoules‐millimeters per hectare‐hour.
  • Soil loss from the agricultural watershed was strongly correlated (R2 = 0·85) to storm energy‐intensity (EI30). However, the correlation of soil loss with the EI30 (R2 = 0·71) was poor for the forest watershed due to the effect of canopy vegetation, which significantly reduced the energy of raindrop impact. Over the study period, cumulative soil losses were 10·0 t ha−1 for the agricultural site and 0·5 t ha−1 for the forest site. 2
  • 2 Metric tons per hectare.
  • The largest storm observed during the study period resulted in erosion losses of 3·78 t ha−1 and 0·2 t ha−1 from the agricultural and forest sites respectively. The regression models were developed using the measured data for prediction of runoff and soil loss over the watersheds of St Lucia under similar conditions. This study contributed towards efficient watershed management planning and implementation of suitable water conservation measures in St Lucia. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
    12.
    As water for irrigation purposes becomes increasingly scarce because of climate change and population growth, there is growing interest in regulated deficit irrigation (RDI) as a way to improve efficiency of water usage and farm productivity in arid and semi‐arid areas. Salinity is also becoming an important problem in these same regions. Experiments were performed to investigate the effects of RDI and salt stress on two legumes crops, common bean (Phaseolus vulgaris L.) and mungbean (Vigna radiata (L.) Wilczek); previous work showed contrasting responses to RDI by these two crops under field conditions. The seed and biomass yields of both crops were reduced as a result of increasing water deficit stress; however, mungbean was able to maintain the same proportion of its biomass in reproductive structures and maintain its harvest index under stress, whereas common bean’s decreased. In addition, photosynthesis in mungbean was higher than in common bean and higher at the same levels of transpiration. Finally, salinity stress did not affect the water potential, harvest index or the specific leaf weight of either crop. There were no interactions between salinity and crops or RDI levels, which suggest that the two crops do not differ in their response to salinity stress, and that RDI levels do not modify this response.  相似文献   
    13.
    With world population expected to reach 9.2 billion people by 2050, improved irrigation methods will be needed to increase the productivity of agricultural land and improve food supply worldwide. The objective of this work was to examine the effect of regulated deficit irrigation (RDI) and alternate furrow irrigation (AFI) on the yield and yield components of two legume species (common bean and mungbean) produced as a second crop following winter wheat in Uzbekistan, Central Asia. Water relations and crop development were also examined. The research was conducted during two successive growing seasons in the Fergana valley. Production of mungbean using the severe stress RDI treatment in combination with AFI resulted in the highest yields with the lowest quantity of applied water in 2004. In addition, yields of common bean in the moderate stress treatment were not different from the recommended schedule, although irrigation events were decreased from 4 to 2. AFI did not reduce yields, and it did not interact with RDI to reduce yields further. In general, mungbean yields were higher than those of common bean. The combination of AFI and RDI can allow legume production with reduced water inputs.  相似文献   
    14.
    农田水位管理系统地下排水磷淋失实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
    农田控制排水对减少土壤养分淋失、保护农田水环境具有重要作用.为探讨影响地下排水磷淋失量的要素,基于田间实验小区观测资料,统计分析了玉米作物生长期间农田水位管理系统运行对地下排水量和磷淋失量的影响,结果表明,与暗管自由排水系统相比,农田水位管理系统下的累积排水总量约减少1/3,但次地下排水磷淋失浓度和地下排水总磷累积淋失...  相似文献   
    15.
    A field experiment was conducted to evaluate the effect of long-term exogenous sucrose supply on aspects of corn plant physiology and development during the grain filling period. Concentrated sucrose solution was supplied to corn ( Zea mays L.) stems by an injection technique. This injection technique delivered pressurized solutions through syringe needles sealed to the stem with latex. The pressure was applied to the syringe plunger with ceramic construction bricks. Solutions containing sucrose at 0, 150, and 300 g L−1 were injected over a 32 day period encompassing the duration of the active grain filling period. The primary ears of plants injected with sucrose produced approximately 50% more kernels and 30% more grain weight than those injected with distilled water. The injected internode was also considerably heavier (56%) for plants receiving 300 g sucrose L−1 than plants receiving distilled water. For all measured variables, plants injected with distilled water were either not different from or had larger values than the non-injected controls. After one week sucrose injection caused photo-synthetic inhibition (as measured by chlorophyll fluorescence) in the leaf just above the ear and the ear leaf, and this was more severe for plants receiving 300 g sucrose L−1 than for those receiving 150 g sucrose L−1. For sucrose injected plants, the increased size of the primary ear was concomitant with a large decrease in grain production by the secondary ear and an overall decrease in per plant grain production. These results suggest that the mechanisms for signalling between sinks (the primary and secondary ears) and the primary sink and the source (leaves) are different.  相似文献   
    16.
    Spatial data analysis tools for predicting the variability of non-point source pollutants minimize the time, effort and cost involved in extensive and exhaustive real field data measurements. In this study, exploratory data analysis, fitting of semivariogram models, and kriging techniques of geostatistics were used to develop the spatial variability map of soil phosphorous saturation (P sat) percentage over the St-Espirit watershed (2610 ha), located in Quebec, Canada. The P sat measured values for the 281 geo referenced land parcel units (LPU) within the watershed were interpreted and analyzed using the ArcGIS® tool. The geostatistical extension module of ArcGIS® was used for exploratory data analysis, semivariogram model fitting, and development of a P sat prediction map using the ordinary kriging technique. Using these geostatistical procedures and adjustment of lag sizes and lag intervals representing the data sets, it was estimated that the spherical semivariogram model fitted well to represent the P sat variability with residual sum square (RSS) of 0.0003 and coefficient of determination (R 2) of 0.98. Further, the developed model was used to predict the P sat variability over the St. Esprit watershed using the 1605 geo-referenced LPU locations. The generated spatial variability map was geo-spatially processed with the natural drainage network and land use feature classes of the watershed to ascertain the phosphorous loading and locate vulnerable LPUs for phosphorous management. It was observed that the P sat levels were higher at the up stream locations and near the drainage channels than the locations close to watershed outlet. Also, the land pockets with more than 60% agricultural land use resulted in supra-optimal P sat values (10% > P sat < 20%), out of which 8.5 to 16.3 ha agricultural land of the St. Esprit watershed exhibited critical agro-environmental threshold P sat values (P sat > 20%). It was also revealed that, around 23.5% of the watersheds cropped area has reached these threshold levels which necessitate judicious P input management.  相似文献   
    17.
    A new watershed model, DRAIN-WARMF, was developed to simulate the hydrologic processes and the nitrogen fate and transport that occur in small, predominantly subsurface-drained, agricultural watersheds that experience periodic freezing and thawing conditions. In this modeling approach, surface flow is simulated using a watershed scale model, WARMF, and subsurface flow is estimated using a field-scale model for subsurface-drained shallow water table fields, DRAINMOD 5.1. For subsurface flow calculations, the watershed is subdivided into uniform cells, and DRAINMOD is run on each cell with inputs based on the individual hydrologic characteristics of the cell. The coupling results in a distributed parameter model that calculates the total flow at the outlet of a watershed as well as the nitrogen losses. The model was evaluated for the St. Esprit watershed, located approximately 50 km northeast of Montreal. Simulations were carried out from 1994 to 1996; data from 1994 and 1995 was used for model calibration and data from 1996 was used for model validation. The new model was able to adequately simulate the hydrologic response and nitrate losses at the outlet of the watershed. Comparing the observed daily flow/monthly nitrogen with the model's outputs over the validation period returned an R2 value of 0.74/0.86 and modeling efficiency of 0.72/0.83. This clearly demonstrates the model's ability to simulate hydrology and nitrogen losses occurring in small agricultural watersheds in cold climates.  相似文献   
    18.
    Integrated watershed management (IWM) is vital in achieving agricultural sustainability in terms of both production and environmental protection. A decision support system (DSS) is useful in generating alternative decision scenarios for management of natural resources, facilitating the implementation of IWM concepts in an interactive and holistic way. The decision to implement an appropriate land use coupled with suitable soil and water conservation techniques not only enhances watershed health but also prevents sediment losses. Besides reducing basin fertility, such losses decrease the storage capacity of downstream reservoirs through silt deposition, which can, in turn, give rise to low biomass production and poorer flood control. In order to facilitate IWM, an effort was made to develop, in the Visual Basic programming language, a soil and water conservation DSS which considered both structural and cropping practices for arresting sediment loss. Input parameters to the DSS for a given tract of land included: mean slope; sediment loss; soil type; and land capability class (LCC). Outputs included decision criteria to choose among alternative structural measures and suggested cropping systems to serve as biological measures to reduce soil loss and conserve water. Structural watershed management measures included a variety of soil and water conservation structures widely adopted by farming communities throughout the world. The DSS is capable of providing sediment control solutions not only for small watersheds but also for larger drainage basins, by dividing the basin into smaller watersheds. The DSS was validated for a watershed on the Caribbean island of St Lucia and used to suggest measures for a 10° slope under specific soil type, sediment loss and LCC conditions. The measures proposed included bench terraces, graded contour bunds, conservation ditches, concrete chute spillways, diversion dams and conservation cropping systems. The measures actually adopted on‐site were conservation ditches, graded contour bunds and conservation cropping systems, a close parallel to the DSS's proposed measures. On slopes ranging from 5–55°, implementation of the suggested control measures resulted in a 34–37 per cent reduction in soil loss on the watershed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号