首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33799篇
  免费   592篇
  国内免费   1506篇
林业   5455篇
农学   3678篇
基础科学   1585篇
  6684篇
综合类   5147篇
农作物   2961篇
水产渔业   2367篇
畜牧兽医   3350篇
园艺   1500篇
植物保护   3170篇
  2024年   25篇
  2023年   126篇
  2022年   341篇
  2021年   561篇
  2020年   509篇
  2019年   501篇
  2018年   3477篇
  2017年   3595篇
  2016年   1825篇
  2015年   676篇
  2014年   575篇
  2013年   659篇
  2012年   1778篇
  2011年   3506篇
  2010年   3546篇
  2009年   2675篇
  2008年   2516篇
  2007年   3031篇
  2006年   730篇
  2005年   766篇
  2004年   446篇
  2003年   455篇
  2002年   311篇
  2001年   229篇
  2000年   329篇
  1999年   373篇
  1998年   293篇
  1997年   288篇
  1996年   258篇
  1995年   236篇
  1994年   217篇
  1993年   213篇
  1992年   201篇
  1991年   108篇
  1990年   103篇
  1989年   114篇
  1988年   86篇
  1987年   39篇
  1986年   26篇
  1985年   10篇
  1984年   17篇
  1983年   13篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1977年   20篇
  1969年   7篇
  1968年   21篇
  1967年   8篇
  1965年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Surface properties of fibrous and ground cotton and linen were investigated by inverse gas chromatography (IGC) and the contact angle with different liquids was also measured on fabrics composed of both fibers. Results proved that dispersion component of surface tension (γ s d ) determined by IGC depends not only on the surface energy, but also on several factors influencing the adsorbability of probe molecules on the cellulosic substrates. For cotton samples, the trapping of n-alkanes among waxy molecules in the outer layer of fibers can be presumed. This effect results in larger γ s d for cotton fibers than for linen in spite of the higher wettability of the linen fabrics. Besides the surface energy and trapping effects, the grinding also influences the γ s d values. Specific enthalpy of adsorption (ΔH A ab ) of polar probes could be determined on all linen samples, but only on the ground cotton sample. Lewis acid-base character calculated for linen and ground cotton samples depends on the same effects as the γ s d does. The similar ΔH A ab values of chloroform (acidic) and THF (basic) measured on each of the samples support the conclusion that the surface character is amphoteric, which is also proved by the high ΔH A ab values of the amphoteric ethyl acetate and acetone probes.  相似文献   
952.
Polyvinylidene fluoride (PVdF) membranes in spite of having many critical properties necessary for lithium-ion batteries, do not have satisfying thermal and mechanical resistance. The goal of this study was to combine the good mechanical and thermal properties of PP nonwoven fabric with the excellent electrochemical properties of PVdF nanofibers to exploit a high-performance membrane for lithium-ion batteries. This work reports the preparation of PVdF nanofiber membranes using electrospinning on a polypropylene (PP) spunbonded nonwoven fabric and an aluminum foil followed by a hot-pressing treatment. The morphology and size of the membranes were studied by the scanning electron microscopy. The tensile strength of the membrane with the PP support was superior to the PVdF membrane. Thermal stability of the prepared membranes was determined using the TGA method and the dimensional stability was investigated by measuring the shrinkage ratio at 105 °C. The results have shown that the PVdF/PP membrane was thermally more stable than the PVdF and the commercial Celgard 2325 membranes. The batteries using PVdF/PP membrane exhibited higher electrochemical oxidation limit, better cycling performance and less discharge capacity fading during 100 cycles compared to PVdF and Celgard membranes. The results of this study showed that PVdF/PP membrane is a promising advanced membrane in lithium-ion batteries.  相似文献   
953.
We prepared solid polymer electrolytes (SPEs) composed of poly(ethylene glycol) monomethyl ether acrylate (1A9OMe) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm][OTF]) and 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide ([EMIm][TFSI]) as the ionic liquid. The SPEs formed by appropriately adding ionic liquids in the 1A9OMe prior to thermal cure. The ratio of 1A9OMe and ionic liquid was 1:9, 3:7, and 5:5, respectively. The characterization of solid polymer electrolytes were investigated using Fourier transform infrared spectroscopy in the attenuated total reflectance mode (FTIR-ATR), Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and glavanostatic charge-discharge test. The highest ionic conductivity of SPEs was found to be 4.90×10?4 S/cm in a 1A9OMe/[EMIm][OTF] of 3:7. As IL contents were increased, the specific capacitance of supercapacitor was increased. The specific capacitance of supercapacitor for ionic liquid with large ion size was lower than that for ionic liquid with smaller ion size.  相似文献   
954.
A new series of magenta dyes having different length of alkyl substituents was synthesized to dye unmodified polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE) fiber. It could be concluded that the affinity of the dyes onto unmodified PP and UHMWPE fibers was increased with the increase of the length of alkyl substituents. The optimum length of alkyl group was determined as the longest dodecyl-substituted dye in this study. Their absorption spectra appeared almost the same at visible range, which meant that the length of alkyl substituents did not affect the color appearance of the dyes. The color fastness properties of the dyeings to washing, rubbing and light were good enough for commercialization.  相似文献   
955.
Statistical copolymers of 2-hydroxy-3-benzophenoxy propyl methacrylate (HBPPMA) and benzyl methacrylate (BzMA) in different feed ratios were synthesized by free radical copolymerization method at 60 °C in presence of AIBN initiator. The compositions of copolymer were estimated from 1H-NMR technique. The monomer reactivity ratios of HBPPMA and BzMA were calculated as r1 (rHBPPMA)=0.51±0.076 and r2 (rBzMA)=1.07±0.140 for Kelen-Tüdos method, and was estimated as r1=0.37±0.0006 and r2=0.64±0.0485 according to Fineman Ross equation. The average values estimated from the two methods showed that monomer reactivity ratio of benzyl methacrylate was a slightly high in comparison to HBPPMA. The copolymer system showed an azeotropic point, which is equal to M BzMA =m BzMA =0.43. DSC measurements showed that the Tg’s of poly(HBPPMA) and poly(BzMA) were 84 °C and 73 °C, respectively. The Tg in the copolymer system decreased with increase in benzyl methacrylate content. The decomposition temperature of poly(BzMA) and poly(HBPPMA) occurs in a single stage at about 207 °C and 260 °C, respectively. Those of HBPPMA-BzMA copolymer systems are between decomposition temperatures of two homopolymers. The dielectric constant, dielectric loss factor and electrical conductivity were investigated depend on the frequency of the copolymers. The highest dielectric constants depending on all the studied frequencies were recorded for the poly(HBPPMA) and the copolymer containing the highest HBPPMA unit. The dielectric constant for P(HBPPMA) and P(BzMA) at 1 kHz are 6.56 and 3.22, respectively. Also, those of copolymer systems were estimated between these two values. Similarly, poly(HBPPMA) and copolymers, which are prepared under the same conditions show the dissipation factor and conductivity as well.  相似文献   
956.
The numerical analysis was performed to predict the potential problem, often occurring during the manufacturing process of the disposable medical device of a great volume. The cavity filling analyses were performed for the new design of the 3cc Syringe Barrel using polypropylene(PP1), and a new nucleated polypropylene(PP2) material for better clarity. These analyses have been performed for different processing conditions as well as various wall thickness designs for both materials. With the nucleated material, only the original wall thickness design has been studied at two different processing conditions for comparison purpose. This study was conducted to investigate the optimum part design and processing condition for two different materials. The most desirable design was selected with Design 3 for material utilization and reduced flow stresses by comparing the field results. The new nucleated polypropylene provided slightly better product quality and processing.  相似文献   
957.
Madder is a natural colorant which is commonly applied with metal salts as a mordant to improve its affinity to fibers and color fastness. Madder produces an insoluble complex or lake in the presence of metal ions on mordanted fabric. In this study, wool fabric was pretreated with AgNPs (silver nanoparticles) as a mordant, then dyed with madder. The wool fabric samples were examined by scanning electron microscopy (SEM) and their colorimetric characteristics were evaluated. The formation of spherical silver nanoparticle was confirmed using UV-Visible spectroscopy, SEM images, and elemental analysis. The average size of synthesized silver nanoparticles on the surface of wool fibers is around 73 nm. The dyed wool samples were pretreated with different concentration of Ag+ ions or AgNPs, which showed higher color strength value compared to untreated dyed wool fabric. This pretreatment also presented good antibacterial activity.  相似文献   
958.
In order to prevent surgical complications due to microbial infections, we have developed polypropylene suture grafted with silver nanoparticles (PPsuture/Ag nanocomposite) by a simple immersion procedure. Physical and mechanical properties of developed suture are investigated. Suture surface characteristics are examined by scanning electron microscopy (SEM) imaging and atomic force microscopy (AFM). Silver content on suture surface was determined by Inductively coupled plasma atomic emission spectroscopy (ICP-AES). The mechanical properties of developed antibacterial PP suture/Ag were studied. We note that proposed silver coating method has not affected mechanical performances of suture. Antimicrobial performances of PP suture/Ag nanocomposites against S. aureus and E. coli colonies were also investigated.  相似文献   
959.
The present study is focused on studying the swelling kinetics, thermal and aqueous stabilities, and determination of various forms of water in the chitosan (CS) and polyacrylonitrile (PAN) blend and semi-interpenetrating polymer network (sIPN). CS/PAN blend hydrogel films were prepared by solution casting technique. The blend film with optimum swelling properties was selected for the synthesis of sIPN. CS in the blend was crosslinked with the vapors of Glutaraldehyde (GTA) to prepare sIPN. The fabricated CS/PAN blend and sIPN hydrogels films were characterized with Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and field emission scanning electron microscope (FESEM). The kinetics of swelling, bound and unbound waters and aqueous stability were determined experimentally. FESEM showed good miscibility between CS and PAN, FTIR showed no chemical interaction between CS and PAN; however, it did show a doublet for the sIPN, TGA showed improved thermal stability and swelling kinetic followed second order kinetics. The degree of swelling of the sIPN hydrogels samples at room temperature varied from ~2200 % (with a fair degree of stability (~30 %)) to ~1000 % (with high degree of aqueous stability (43 %)) with increase in the crosslinking time. The calculated unbound water (WUB) max., for the blend was 52.3 % whereas for the bound (WB) the max., was 41.9 %. However, for sIPN hydrogel films, the WUB water decreased (max. 21.0 %) where as the WB increased (max. 52.0 %). The decrease in WUB and increase in the WB is attributed to the formation of a compact structure and increase in the contact area between the water and polymers in sIPN hydrogels due to the induction of new water contacting point in these hydrogel films, respectively.  相似文献   
960.
Poly(2-hydroxyethylmethacrylate) (PHEMA)/hydroxyapatite (HAP) nanocomposites were synthesized through a new route involving nano-sized HAP (nHAP) particles or modified nHAP mixed with monomer 2-hydroxyethylmethacrylate via in situ polymerization in supercritical carbon dioxide (scCO2). Fourier-transform infrared spectroscopy showed phosphate peak increased with nHAP content in composite. X-ray diffraction patterns of PHEMA/nHAP revealed the presence of crystallized nHAP. Thermogravimetric analysis showed that the ultimate nHAP content in PHEMA/nHAP composites is consistent with its initial amount. Scanning electron microscopy revealed that nanocomposite particles are much smaller than PHEMA particles. PHEMA/nHAP composites with average diameter of approximately 600 nm were obtained in scCO2 with 94 % yield. Mechanical properties of PHEMA/nHAP nanocomposites were better than those of PHEMA, and compressive modulus and strength of composites with 30 wt.% nHAP were 193 and 29 MPa, respectively. Nanocomposite adsorption toward bovine serum albumin was evaluated, and results indicated that analyte adsorption amount can reach up to 282 mg/g.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号