首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16639篇
  免费   9篇
林业   3634篇
农学   1306篇
基础科学   139篇
  2831篇
综合类   718篇
农作物   2121篇
水产渔业   1788篇
畜牧兽医   1112篇
园艺   1117篇
植物保护   1882篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   8篇
  2018年   2746篇
  2017年   2707篇
  2016年   1187篇
  2015年   69篇
  2014年   19篇
  2013年   25篇
  2012年   804篇
  2011年   2148篇
  2010年   2113篇
  2009年   1263篇
  2008年   1340篇
  2007年   1585篇
  2006年   39篇
  2005年   105篇
  2004年   113篇
  2003年   167篇
  2002年   67篇
  2001年   6篇
  2000年   41篇
  1999年   2篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   13篇
  1992年   7篇
  1990年   1篇
  1989年   6篇
  1988年   12篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   3篇
  1979年   1篇
  1977年   5篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Approximately 7,000 accessions of Korean soybean (Glycine max (L.) Merrill) landraces, largely composed of three collections, the Korea Atomic Energy Research Institute’s soybean (KAS), the Korean Crop Experiment Station’s soybean (KLS) and the Korean Agricultural Development and Technology Center’s soybean (KADTC) collections, have been conserved at the Rural Development Administration (RDA) genebank in Korea. The accessions within collections were classified based on their traditional uses such as sauce soybean (SA), sprouted soybean (SP), soybean for cooking with rice (SCR), and OTHERS. A total of 2,758 accessions of Korean soybean landraces were used to profile and to evaluate genetic structure using six SSR loci. A total of 110 alleles were revealed by at the six SSR loci. The number of alleles per SSR locus ranged from 9 to 39 in Satt187 and Satt_074, respectively. The number of alleles ranged from 87 in the KADTC collection to 96 in the KLS collection, and from 63 in the SCR group to 95 in the SP group. Nei’s average genetic diversity ranged from 0.68 to 0.70 across three collections, and 0.64 to 0.69 across the usage groups. The average between-group differentiation (G st) was 0.9 among collections, and 4.1 among the usage groups. The similar average diversity among three collections implies that the genetic background of the three collections was quite similar or that there were a large number of duplicate accessions in three collections. The selection from the four groups classified based upon usage may be a useful way to select accessions for developing a Korean soybean landrace core collection at the RDA genebank. DNA profile information of accessions will provide indications of redundancies or omissions and aid in managing the soybean collection held at the RDA genebank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding programs and could be used to develop a core collection.  相似文献   
92.
‘San Marzano’ (SM) is one of the most widely known tomato (Solanum lycopersicum L.) cultivars, and is a classic example of a local variety with a premium value. Unfortunately, the original cultivated form is underrepresented in the Protected Denomination of Origin (PDO) area because of the incidence of contaminant and phenotypically similar genotypes. Our aim was to examine the ability of three DNA marker systems (minisatellite, cleaved amplified polymorphic sequence (CAPS) and simple sequence repeat (SSR)) to reveal the genetic diversity of tomato accessions that were, based on a morphological analysis, very similar. The data indicate that both minisatellites and SSRs can be used to genetically distinguish the analysed materials. Furthermore, these two marker systems depict relationships consistent with the hierarchal pattern obtained by the morphological data. As locally cultivated tomato accessions are often characterised by some degree of genetic variability, our results will be valuable in facilitating the purification, management and breeding of tomato germplasms. The differences between the marker systems employed are also discussed in relation to their usefulness in the agro-food chain.  相似文献   
93.
Transferring ecological information across scale often involves spatial aggregation, which alters information content and may bias estimates if the scaling process is nonlinear. Here, a potential solution, the preservation of the information content of fine-scale measurements, is highlighted using modeled net ecosystem exchange (NEE) of an Arctic tundra landscape as an example. The variance of aggregated normalized difference vegetation index (NDVI), measured from an airborne platform, decreased linearly with log(scale), resulting in a linear relationship between log(scale) and the scale-wise modeled NEE estimate. Preserving three units of information, the mean, variance and skewness of fine-scale NDVI observations, resulted in upscaled NEE estimates that deviated less than 4% from the fine-scale estimate. Preserving only the mean and variance resulted in nearly 23% NEE bias, and preserving only the mean resulted in larger error and a change in sign from CO2 sink to source. Compressing NDVI maps by 70–75% using wavelet thresholding with the Haar and Coiflet basis functions resulted in 13% NEE bias across the study domain. Applying unique scale-dependent transfer functions between NDVI and leaf area index (LAI) decreased, but did not remove, bias in modeled flux in a smaller expanse using handheld NDVI observations. Quantifying the parameters of statistical distributions to preserve ecological information reduces bias when upscaling and makes possible spatial data assimilation to further reduce errors in estimates of ecological processes across scale.  相似文献   
94.
We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by a more detailed fire behavior model from which the simpler algorithm was derived. Equivalence testing allows objective comparisons of the output of simple and complex models, to determine if the results are significantly similar. Neutral landscape models represent a range of landscape conditions that the model may encounter, allowing evaluation of the sensitivity and behavior of the model to different landscape compositions and configurations. We first tested the model for universal applicability, then narrowed the testing to assess the practical domain of applicability. As a whole, the calibrated simple model passed the test for significant equivalence using the 25% threshold. When applied to a range of landscape conditions different from the calibration scenarios, the model failed the tests for equivalence. Although our particular model failed the tests, the neutral landscape models were helpful in determining an appropriate domain of applicability and in assessing the model sensitivity to landscape changes. Equivalence testing provides an effective method for model comparison, and coupled with neutral landscapes, our approach provides an objective way to assess the domain of applicability of a spatial model.  相似文献   
95.
Maintaining connectivity among local populations in a fragmented landscape is crucial for the survival of many species. For isolated habitat patches, stochastic fluctuations and reduced gene flow can lead to high risk of extinction. The connectivity of the landscape is especially crucial for the carabid species living in the fragmented forests of the Bereg plain (NE Hungary and W Ukraine) because a highway will be constructed through the plain. Our purpose is to (1) evaluate the impacts of three possible highway tracks, (2) suggest a solution that is realistic with less impact on connectivity than other plans and (3) discuss how to decrease the disadvantageous effects of each track. Our results, based on a network analysis of landscape graph of patches and ecological corridors, indicate that the intended highway could have deleterious consequences on forest-living carabids. Relatively simple actions, like the establishment of stepping stones, could compensate for the loss of habitat connectivity and promote the survival of carabids, or minor modifications in one possible track could diminish its adverse effects. While many other studies would be needed for a comprehensive assessment of the biotic impact of the highway, we provide an example on the usefulness of network analysis for land use management. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
96.
Habitat specificity indices reflect richness (α) and/or distinctiveness (β) components of diversity. The latter may be defined by α and γ (landscape) diversity in two alternative ways: multiplicatively () and additively (). We demonstrate that the original habitat specificity concept of Wagner and Edwards (Landscape Ecol 16:121–131, 2001) consists of three independent components: core habitat specificity (uniqueness of the species composition), patch area and patch species richness. We describe habitat specificity as a family of indices that may include either area or richness components, or none or both, and open for use of different types of mean in calculation of core habitat specificity. Core habitat specificity is a beta diversity measure: the effective number of completely distinct communities in the landscape. Habitat specificity weighted by species number is a gamma diversity measure: the effective number of species that a patch contributes to landscape richness. We compared 12 habitat specificity indices by theoretical reasoning and by use of field data (vascular plant species in SE Norwegian agricultural landscapes). Habitat specificity indices are strongly influenced by weights for patch area and patch species richness, and the relative contribution of rare vs. common species (type of mean). The relevance of properties emphasized by each habitat specificity index for evaluation of patches in a biodiversity context is discussed. Core habitat specificity is emphasized as an ecologically interpretable measure that specifically addresses patch uniqueness while habitat specificity weighted by species number combines species richness and species composition in ways relevant for conservation biological assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
97.
Habitat fragmentation is a major cause for species loss, but its effect on invertebrates with low active dispersal power, like terrestrial gastropods, has rarely been studied. Such species can not cross a hostile habitat matrix, for which the predictions of island theory, such as positive relations between species richness and patch size, should apply. In order to test this prediction, we studied gastropod species diversity by assessing gastropod assemblage characteristics from 35 sites in 19 fragments of deciduous old-growth forests in the Lower Rhine Embayment, Germany. Assemblages differed between larger (≥700 ha) and smaller forests (<400 ha), those of large forests held a higher percentage of forest species. Although α-diversity was similar between the two forest size classes, small forests often comprised matrix species, resulting in a higher β-diversity. Edge effects on the species richness of matrix species were noticeable up to 250 m into the forest. Hierarchical partitioning revealed that distance to disturbances (external edge, internal edges like roads) explained most assemblage variables, whereas forest size and woodland cover within a 1 km radius from the sites explained only a few assemblage variables. Densities of two forest-associated species, Discus rotundatus and Arion fuscus, decreased with forest size. Yet, forest size was positively correlated with richness of typical forest species and densities of Limax cinereoniger. The latter species seems to need forests of >1,000 ha, i.e., well above the size of most fragments. In conclusion, the prediction is valid only for forest species. The response to fragmentation is species specific and seems to depend on habitat specialization and macroclimatic conditions. Jean-Pierre Maelfait: Deceased.  相似文献   
98.
99.
The viability of metapopulations in fragmented landscapes has become a central theme in conservation biology. Landscape fragmentation is increasingly recognized as a dynamical process: in many situations, the quality of local habitats must be expected to undergo continual changes. Here we assess the implications of such recurrent local disturbances for the equilibrium density of metapopulations. Using a spatially explicit lattice model in which the considered metapopulation as well as the underlying landscape pattern change dynamically, we show that equilibrium metapopulation density is maximized at intermediate frequencies of local landscape disturbance. On both sides around this maximum, the metapopulation may go extinct. We show how the position and shape of the intermediate viability maximum is responding to changes in the landscape’s overall habitat quality and the population’s propensity for local extinction. We interpret our findings in terms of a dual effect of intensified landscape disturbances, which on the one hand exterminate local populations and on the other hand enhance a metapopulation’s capacity for spreading between habitat clusters.  相似文献   
100.
The question of what determines plant community composition is fundamental to the study of plant community ecology. We examined the relative roles of historical land use, landscape context, and the biophysical environment as determinants of plant community composition in regenerating citrus groves in north-central Florida. Results were interpreted in light of plant functional traits. Herbaceous and woody plants responded differently to broad-scale variables; herbs correlated most strongly with surrounding land cover at a scale of 8 km, while the only significant determinant of woody species distributions was local land use history. There were significant correlations between herbaceous species and spatial context, habitat isolation, environmental variables, and historical variables. Partial Mantel tests indicated that each variable provided a unique contribution in explaining some of the variation in the herbaceous dataset. The correlation between woody plants and local historical variables remained significant even with other effects corrected for. In the herbaceous community, species composition was linked to functional traits much as expected from classical theory. While spatial influences in our study system are important for both woody and herbaceous plants, the primary determinant of plant community composition in regenerating citrus groves is historical land use. Our results suggest that the fine-scale mechanisms of local competition, tolerance and facilitation invoked by many classical studies may ultimately be less important than land use history in understanding current plant community composition in regenerating agricultural areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号