首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   12篇
林业   2篇
农学   3篇
基础科学   1篇
  17篇
综合类   10篇
农作物   3篇
水产渔业   6篇
畜牧兽医   22篇
植物保护   12篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1996年   2篇
  1985年   1篇
  1962年   1篇
排序方式: 共有76条查询结果,搜索用时 218 毫秒
31.
Several methods for extraction and quantification of proteins from lecithins were compared. Extraction with hexane-2-propanol-water followed by amino acid analysis is the most suitable method for isolation and quantification of proteins from lecithins. The detection limit of the method is 15 mg protein/kg lecithin, and the quantification limit is 50 mg protein/kg. The relative repeatability limits for samples containing 0-500 and 500-5000 mg protein/kg sample were 12.6 and 7.5%, respectively. The protein recovery ranged between 101 and 123%. The protein content has been determined in different kinds of lecithins. The results were as follows: standard soy lecithins (between 232 and 1338 mg/kg), deoiled soy lecithin (342 mg/kg), phosphatydylcholine-enriched soy lecithins (not detectable and 163 mg/kg), sunflower lecithins (892 and 414 mg/kg), and egg lecithin (50 mg/kg). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein patterns of the standard soy and sunflower lecithins are very similar to those of soy flour. The protein profile of the egg lecithin shows several bands with a broad range of molecular masses. The molecular masses of the main proteins of soy lecithins and soy flour have been determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and ranged from 10.5 to 52.2 kDa. Most of the major proteins from soy and sunflower lecithins identified by MALDI-MS and electrospray tandem MS belong to the 11S globulin fraction, which is one of the main fractions of soy and sunflower seeds. In addition, the seed maturation protein P34 from the 7S globulin fraction of soy proteins has also been identified in soy lecithins. This protein has been reported as the most allergenic protein in soybean.  相似文献   
32.
The retention of crop residues as mulch on the soil surface in conservation agriculture systems greatly influences the fate of pesticides, as most of the applied pesticide is intercepted by mulch before moving to the soil. This work was conducted in order to model the effect of maize decomposition on glyphosate degradation in mulch and soil. Labelled 14C‐glyphosate degradation was monitored for 49 days in three treatments with the same soils but with maize residues at different stages of decomposition (0, 20 and 49 days). Fresh residues of maize (0 days) exhibited an evolution of their biochemical fractions to a greater extent than decomposed residues. Glyphosate mineralization was faster in the 0‐day treatment in mulch residues and in the soil layer below the mulch. However, a greater formation of non‐extractable residues (NERs) was observed in mulch residues and soils in the 20‐ and 49‐day treatments than in the 0‐day treatment. Modelling maize mulch decomposition with the COP‐soil model indicated that microbial activity was different in the three treatments and depended on the initial composition of maize residues. Glyphosate mineralization in mulch and soil can be simulated with an assumption of co‐metabolism by coupling the modules of pesticide degradation and mulch carbon decomposition. Glyphosate and its metabolites, including soluble and adsorbed fractions, were simulated with the same adsorption coefficients for all treatments. The simulation of NER formation, however, suggested that more than one microbial population may be involved in the degradation process and could be added in the future development of the model.  相似文献   
33.
To establish chronic infections, viruses must develop strategies to evade the host's immune responses. Many retroviruses, including mouse mammary tumor virus (MMTV), are transmitted most efficiently through mucosal surfaces rich in microbiota. We found that MMTV, when ingested by newborn mice, stimulates a state of unresponsiveness toward viral antigens. This process required the intestinal microbiota, as antibiotic-treated mice or germ-free mice did not transmit infectious virus to their offspring. MMTV-bound bacterial lipopolysaccharide triggered Toll-like receptor 4 and subsequent interleukin-6 (IL-6)-dependent induction of the inhibitory cytokine IL-10. Thus, MMTV has evolved to rely on the interaction with the microbiota to induce an immune evasion pathway. Together, these findings reveal the fundamental importance of commensal microbiota in viral infections.  相似文献   
34.
The aim of this study was to identify a signal that could be used as an androgen exposure indicator in the European bullhead (Cottus sp.). For this purpose, the ultra-structure of the kidney was characterized to identify normal structure of this organ, and histological changes previously described in the kidney of breeding male bullheads were quantified using the kidney epithelium height (KEH) assay previously developed and validated for the stickleback. In the next step, the effect of trenbolone acetate (TbA), a model androgen, was assessed to identify potential androgenic regulation of bullhead kidney hypertrophy. Measurement of KEH performed on adult non-breeding male and female bullheads exposed for 14 and 21 days to 0, 1.26 and 6.50 μg/L showed that kidney hypertrophy is induced in a dose-dependent manner, confirming the hypothesis that the European bullhead possesses a potential biomarker of androgen exposure. Combined with the wide distribution of the European bullhead in European countries and the potential of this fish species for environmental toxicology studies in field and laboratory conditions, the hypothesis of a potential biomarker of androgen exposure offers interesting perspectives for the use of the bullhead as a relevant sentinel fish species in monitoring studies. Inducibility was observed with high exposure concentrations of TbA. Further studies are needed to identify molecular signals that could be more sensitive than KEH.  相似文献   
35.
BACKGROUND: After the rinsing of spray equipment, the rinsing water contains polluting products. One way to avoid pollution is to bring the rinsing water over a purification system, a biological bed. The system consists of an impermeable tub filled with a biomix substrate that facilitates biodegradation of pesticides. Usually, straw is one component of the biomix. The objective of this study was to assess the efficiency of an unusual substrate, bagasse, a residue of sugar cane, for the degradation of three pesticides, glyphosate, malathion and lambda‐cyhalothrin. RESULTS: Results showed that more than 99% of malathion and glyphosate were degraded in 6 months. In the biological bed, the DT50 value for malathion was 17 days, for glyphosate 33 days and for lambda‐cyhalothrin 43 days. The degradation rate of aminomethylphosphonic acid (AMPA) residues from the degradation of glyphosate was slower than that of the other pesticides (DT50 69 days). Finally, the innocuousness of the biomix after 6 months of degradation was confirmed by biological tests. CONCLUSIONS: Although the degradation rates of the three pesticides in the present bagasse‐based system were similar to those under temperate conditions, the degradation conditions were improved by comparison with those in soil under the given tropical conditions. Further benefits of this system are pesticide confinement, to avoid their dispersion in the environment by liquids or solids, and a lower overall cost. Finally, possibilities for optimising the bagasse‐based system (e.g. management of the water content and nature of the biomix) are discussed. Copyright © 2008 Society of Chemical Industry  相似文献   
36.
37.
It is largely accepted that larval experience influence host-plant preference of larvae. In general, larval experience with a host plant induces both an odour and feeding preference for that plant. In a previous study, exposure of three noctuid stem borer species, i.e. Sesamia nonagrioides, Busseola fusca and B. nairobica, to a vanillin-enriched medium induced an olfactory preference for the odours of this medium in the larvae of these species. Here, we checked if the exposure to a vanillin-enriched medium also induced a feeding preference for this diet. Different life stages (i.e. neonate larvae to adults) of the three species were conditioned to an artificial diet enriched with vanillin over two generations. Thereafter, two-choice tests on third-generation larvae were done using a Y-tube olfactometer for odour preferences and diet choice experiments. Larvae of all three-species conditioned to the vanillin diet oriented significantly towards the odour of this diet, whereas the non-conditioned larvae did not. Still, apart for B. fusca, the conditioned larvae did not exhibit a feeding preference for this diet, thus odour preference did not match the feeding choice of the conditioned larvae. The implication of this result on insect’s adaptability to a new host plant in a changing environment is discussed.  相似文献   
38.

Purpose

The densification and expansion of urban areas will increase the streams of waste materials such as bricks, concrete and street sweeping waste. In parallel, green areas offer the potential to overcome many challenges that face growing/expanding cities but require the use of large amounts of natural resources such as natural topsoil and aggregates. In this work, various waste materials mixed with organic debris are tested for greening applications in urban environments as an alternative to the consumption of natural resources.

Materials and methods

Five combinations of artefacts were studied either as “growing material” (i.e. dedicated to plant growth) or “structural material” (as support for traffic). These constructed Technosols were studied in situ in lysimeters under two sets of contrasting climatic conditions at two sites in France (Angers, oceanic climate, and Homécourt semi-continental climate). They were planted with trees (Acer platanoides) and with ryegrass (Lolium perenne L.).

Results and discussion

Compared to natural soils, the constructed Technosols exhibited high porosities and highly saturated hydraulic conductivities (up to 0.76 m3 m?3, and to 34.74 cm h?1, respectively). The physical properties–i.e. macroporosity and microporosity–of these artificial soils revealed high water supply for plants, with available soil water ranging from 0.5 to 2.9 mm cm?1. Tree and ryegrass roots were able to grow in the entire soil volume available in the lysimeters. Organic matter nature and soil pH conditions appeared to be the main drivers of plant development.

Conclusions

Constructed Technosols are suitable for vegetation growth and constitute a valuable alternative to the consumption of natural arable earth for urban greening applications, e.g. gardens, parks, and tree lines. Furthermore, they can provide high levels of relevant ecosystem functions in cities such as water retention and infiltration, plant settlement, carbon sequestration and even biodiversity habitats.
  相似文献   
39.
Plants are generally assumed to influence the surrounding soil microflora through rhizodeposition. However, the role of rhizodeposits, and especially organic acids, in structuring the bacterial communities is still poorly understood. In this study, we asked the question whether plants differing in organic acid secretion have a different impact on the soil bacterial communities, and if this is the case, to which extent this impact is due to different organic acid concentrations in the rhizosphere. To investigate this question, we compared white lupin and wheat. The former is a high organic acid-secreting species, while the latter secretes only low amounts of carboxylates. We grew the plants in large microcosms including root-free control compartments for one year (replanted every second month) and analyzed the spatio-temporal changes in soil ATP concentrations, as well as in diversity and structure of bacterial communities (using DNA- and RNA-based DGGE) along a root-soil gradient after two, six and twelve month's cultivation. Our results showed: i) that white lupin and wheat differed in their impact on soil ATP concentrations and on the structure of root bacterial communities; ii) that cultivation time was a key factor in explaining the observed differences in all the parameters studied; and iii) that the amounts of organic acids accounted for a significant proportion (15%) of the variability within root active communities. These results indicate that plants influence their associated bacterial communities in a species-specific way and that for communities living in the direct vicinity of roots (rhizoplane-endorhizosphere), a significant part of this influence can be attributed to root-secreted organic acids.  相似文献   
40.
Purpose

Fine sediment accumulates upstream of hydroelectric dams. To ensure that dams can operate properly, part of the sediment has to be dredged and land managed. In parallel, using topsoil from agricultural parcels for urban greening or land restoration is currently controversial because arable surface areas are decreasing. An alternative idea for protecting these natural resources consists in reusing fine dredged sediment to construct multifunctional soils. This agronomic use is only possible if sediment can provide acceptable physical and chemical properties for plant growth.

Materials and methods

Four dredged sediments with contrasted initial agronomic properties and one control soil were mixed or not with green waste compost (40% v/v) and used to construct triplicate 30-cm depth soils in lysimetric containers (1.11?×?0.71 m). The 30 constructed soils were exposed to the in situ conditions and sown with ryegrass (Lolium perenne). The evolution of soil chemical and physical properties and plant development were studied every 6 months for 18 months.

Results and discussion

Above- and below-ground biomass production of the constructed soils contrasted according to the sediment properties and to compost addition. A statistical approach identified eight soil parameters linked to biomass production. Among these parameters, soil structure, quantified from aggregate stability, played a fundamental role. A focus on physical properties confirmed that some sediments were only partially adapted to ryegrass support. Compost addition improved sediment physical properties over time, but caused temporary N deficiency during the first months after installation which limited shoot biomass production. Exogenous plant species developed on the constructed Technosols, especially on the soils where the lack of structure and N deficiency had the strongest effect.

Conclusions

All sediments were suitable for plant growth over the 18 months of the study. A few soil properties emerged as markers of the fertility of sediment-made Technosols. Among them, the soil structure was one of the most determining parameters. It can be assessed by measuring aggregate stability, macroporosity, the crustability index, and bulk density, while available nutrients (N, P, K) and pH seem sufficient to assess chemical fertility. The balance between the properties of the sediment-made Technosols and the needs of the plants seems to be an essential lever for the establishment of functional soil-plant systems for urban greening or for ecological restoration.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号