首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   7篇
基础科学   1篇
  99篇
综合类   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   8篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
81.
Eurasian Soil Science - The postagrogenic dynamics of organic carbon (Corg), total nitrogen (Ntot), and density fractions of organic matter (OM) in the dark gray soil (Haplic Phaeozem, Belgorod...  相似文献   
82.
This study addresses the issue of carbon (C) fluxes through below ground pools within the rhizosphere of Lolium perenne using the 14C pulse labeling. Lolium perenne was grown in plexiglas chambers on topsoil of a Haplic Luvisol under controled laboratory conditions. 14C‐CO2 efflux from soil, as well as 14C content in shoots, roots, soil, dissolved organic C (DOC), and microbial biomass were monitored for 11 days after the pulsing. Lolium allocates about 48 % of the total assimilated 14C below the soil surface, and roots were the primary sink for this C. Maximum 14C content in the roots was observed 12 hours after the labeling and it amounts to 42 % of the assimilated C. Only half of the 14C amount was found in the roots at the end of the monitoring period. The remainder was lost through root respiration, root decomposition, and rhizodeposition. Six hours after the 14C pulse labeling soil accounted for 11 %, DOC for 1.1 %, and microbial biomass for 4.9 % of assimilated C. 14C in CO2 efflux from soil was detected as early as 30 minutes after labeling. The maximum 14C‐CO2 emission rate (0.34 % of assimilated 14C h—1) from the soil occurred between four and twelve hours after labeling. From the 5th day onwards, only insignificant changes in carbon partitioning occurred. The partitioning of assimilated C was completed after 5 days after assimilation. Based on the 14C partitioning pattern, we calculated the amount of assimilated C during 47 days of growth at 256 g C m—2. Of this amount 122 g C m—2 were allocated to below ground, shoots retained 64 g C m—2, and 70 g C m—2 were lost from the shoots due to respiration. Roots were the main sink for below ground C and they accounted for 74 g C m—2, while 28 g C m—2 were respired and 19 g C m—2 were found as residual 14C in soil and microorganisms.  相似文献   
83.
A novel method of separating exudates from root respiration in non‐sterilized soils has been developed. The method is based on a simultaneous elution of exudates from rhizosphere and the blowout of CO2 originating from root respiration. The innovation of the method lies in the function of a membrane pump to drive the movement of air and simultaneously the circulation of water according to the Siphon principle. The separation method was tested by means of 14C pulse labeling of Lolium perenne to track the C dynamics in the production of rhizosphere CO2 and of exudates, which were eluted. The total 14C activity of rhizosphere CO2 and of eluted exudates was found to be 8.5 % and 2.3 % of total assimilated 14C, respectively. Thus, at least 19 % of root‐derived C can be accounted to root exudation. However, the suggested Siphon method underestimates the amount of exudates and shows only a minimum of organic substances exuded by roots. The diurnal dynamics of exudation was detected, but no significant day‐night changes were measured in root and microbial respiration. Tight coupling of assimilation with exudation, but not with root and microbial respiration, was observed. The advantages, shortcomings, and possible applications of the Siphon method are discussed.  相似文献   
84.
Decomposition rates of the [2-14C]-glucose and [2-14C]-glycine in four different soils of the long-term field trial of Moscow were investigated in a 3-months laboratory experiment in which 14CO2 respiration was measured. A model with three decomposition components and two distribution parameters was developed and validated with the data of the experiment. The decay rate constants of free [2-14C]-glucose (4–32 day-1) were slower than those of [2-14C]-glycine (16–44 day-1). The calculated use efficiency for microbial biosynthesis of the second carbon atom was 47% for glucose and 31% for glycine. The potential half-life of labelled carbon in the microbial soil biomass ranged from 0.6 to 4.4 days, depending on the soil type and the initial amount of added substrate. The calculated total utilisation of carbon by the soil biomass from glycine was about 2–5 times lower than that of glucose.The modelled 14C incorporation into the microbial soil biomass reached its maximum on the first day of the incubation experiment and did not exceed 22% of the 14C input. Both of the investigated substances decomposed most rapidly in the soil samples from sites that have not being fertilised with organic or mineral fertilisers during an 81-years period.  相似文献   
85.
Assessment of soil health requires complex evaluation of properties and functions responsible for a broad range of ecosystem services. Numerous soil quality indices (SQI) have been suggested for the evaluation of specific groups of soil functions, but comparison of various SQI is impossible because they are based on a combination of specific soil properties. To avoid this problem, we suggest an SQI-area approach based on the comparison of the areas on a radar diagram of a combination of chemical, biological and physical properties. The new approach is independent of the SQI principle and allows rapid and simple comparison of parameter groups and soils. Another approach analyzing the resistance and sensitivity of properties to degradation is suggested for a detailed evaluation of soil health. The resistance and sensitivity of soil properties are determined through comparison with the decrease of soil organic carbon (SOC) as a universal parameter responsible for many functions. The SQI-area and resistance/sensitivity approaches were tested based on the recovery of Phaeozems and Chernozems chronosequences after the abandonment of agricultural soils. Both the SQI-area and the resistance/sensitivity approaches are useful for basic and applied research, and for decision-makers to evaluate land-use practices and measure the degree of soil degradation.  相似文献   
86.
The origin and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. The present study aimed to elucidate and quantify the carbon (C) flow from both root and shoot litter residues into soil organic, extractable, microbial and fungal C pools. Using the shift in C stable isotope values associated with replacing C3 by C4 plants we followed root- vs. shoot litter-derived C resources into different soil C pools. We established the following treatments: Corn Maize (CM), Fodder Maize (FM), Wheat + maize Litter (WL) and Wheat (W) as reference. The Corn Maize treatment provided root- as well as shoot litter-derived C (without corn cobs) whereas Fodder Maize (FM) provided only root-derived C (aboveground shoot material was removed). Maize shoot litter was applied on the Wheat + maize Litter (WL) plots to trace the incorporation of C4 litter C into soil microorganisms. Soil samples were taken three times per year (summer, autumn, winter) over two growing seasons. Maize-derived C signal was detectable after three to six months in the following pools: soil organic C (Corg), extractable organic C (EOC), microbial biomass (Cmic) and fungal biomass (ergosterol). In spite of the lower amounts of root- than of shoot litter-derived C inputs, similar amounts were incorporated into each of the C pools in the FM and WL treatments, indicating greater importance of the root- than shoot litter-derived resources for the soil microorganisms as a basis for the belowground food web. In the CM plots twice as much maize-derived C was incorporated into the pools. After two years, maize-derived C in the CM treatment contributed 14.1, 24.7, 46.6 and 76.2% to Corg, EOC, Cmic and ergosterol pools, respectively. Fungi incorporated maize-derived C to a greater extent than did total soil microbial biomass.  相似文献   
87.
Silicon (Si) is the second‐most abundant element in the earth's crust. In the pedosphere, however, huge spans of Si contents occur mainly caused by Si redistribution in soil profiles and landscapes. Here, we summarize the current knowledge on the different pools and fluxes of Si in soils and terrestrial biogeosystems. Weathering and subsequent release of soluble Si may lead to (1) secondarily bound Si in newly formed Al silicates, (2) amorphous silica precipitation on surfaces of other minerals, (3) plant uptake, formation of phytogenic Si, and subsequent retranslocation to soils, (4) translocation within soil profiles and formation of new horizons, or (5) translocation out of soils (desilication). The research carried out hitherto focused on the participation of Si in weathering processes, especially in clay neoformation, buffering mechanisms for acids in soils or chemical denudation of landscapes. There are, however, only few investigations on the characteristics and controls of the low‐crystalline, almost pure silica compounds formed during pedogenesis. Further, there is strong demand to improve the knowledge of (micro)biological and rhizosphere processes contributing to Si mobilization, plant uptake, and formation of phytogenic Si in plants, and release due to microbial decomposition. The contribution of the biogenic Si sources to Si redistribution within soil profiles and desilication remains unknown concerning the pools, rates, processes, and driving forces. Comprehensive studies considering soil hydrological, chemical, and biological processes as well as their interactions at the scale of pedons and landscapes are necessary to make up and model the Si balance and to couple terrestrial processes with Si cycle of limnic, fluvial, or marine biogeosystems.  相似文献   
88.
Oxygen (O2) supply and the related redox potential (EH) are important parameters for interactions between roots and microorganisms in the rhizosphere. Rhizosphere extension in terms of the spatial distribution of O2 concentration and EH is poorly documented under aerobic soil conditions. We investigated how far O2 consumption of roots and microorganisms in the rhizosphere is replenished by O2 diffusion as a function of water/air‐filled porosity. Oxygen concentration and EH in the rhizosphere were monitored at a mm‐scale by means of electroreductive Clark‐type sensors and miniaturized EH electrodes under various matric potential ranges. Respiratory activity of roots and microorganisms was calculated from O2 profiles and diffusion coefficients. pH profiles were determined in thin soil layers sliced near the root surface. Gradients of O2 concentration and the extent of anoxic zones depended on the respiratory activity near the root surface. Matric potential, reflecting air‐filled porosity, was found to be the most important factor affecting O2 transport in the rhizosphere. Under water‐saturated conditions and near field capacity up to –200 hPa, O2 transport was limited, causing a decline in oxygen partial pressures (pO2) to values between 0 and 3 kPa at the root surface. Aerobic respiration increased by a factor of 100 when comparing the saturated with the driest status. At an air‐filled porosity of 9% to 12%, diffusion of O2 increased considerably. This was confirmed by EH around 300 mV under aerated conditions, while EH decreased to 100 mV on the root surface under near water‐saturated conditions. Gradients of pO2 and pH from the root surface indicated an extent of the rhizosphere effect of 10–20 mm. In contrast, EH gradients were observed from 0 to 2 mm from the root surface. We conclude that the rhizosphere extent differs for various parameters (pH, Eh, pO2) and is strongly dependent on soil moisture.  相似文献   
89.
Widespread Zn deficiency for rice crop has been reported from different parts of the world, including India. To correct such deficiency, Zn is often applied to the soil as fertilizer. Its concentration in soil solution and its availability to crops is controlled by sorption?–?desorption reactions at the surfaces of soil colloidal materials. The objective of this study was to compare the availability and relative effectiveness of Zn from Zn-EDTA and ZnSO4 sources by applying different Zn levels to a calcareous soil in field experiments through soil application. The uses of Zn-EDTA also increase the yield of rice dry matter yield and grain yield. Regarding maintenance of Zn in soil, it has been observed that the amount of Zn content was recorded higher with the split application of Zn-EDTA as compared to ZnSO4 with the simultaneous 26.1% increase in the yield of rice.  相似文献   
90.
A quantitative assessment of the carbon balance was performed in gray forest soils of the former agricultural lands abandoned in different time periods in the southern part of Moscow oblast. It was based on the field measurements of the total and heterotrophic soil respiration and the productivity of biocenoses. Geobotanical investigations demonstrated that the transformation of the species composition of herbs from weeds to predominantly meadow plants occurred in five–ten years after the soil was no more used for farming. The amount of carbon assimilated in the NPP changed from 97 g C/m2 year in the recently abandoned field to 1103 g C/m2 year in the 10-year-old fallow, and the total annual loss of carbon from the soil in the form of CO2 varied from 347 to 845 g C/m2 year. In five years, the former arable lands were transformed into meadow ecosystems that functioned as a stable sink of carbon in the phytomass and the soil organic matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号