首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
林业   4篇
  34篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有38条查询结果,搜索用时 380 毫秒
21.
22.
Dissolved organic nitrogen (DON) substantially contributes to N leaching from forest ecosystems. However, little is known about the role of DON for N leaching from agricultural soils. Therefore, the aim of our study was to quantify the contribution of DON to total N leaching from four agricultural soils. Concentrations and fluxes of DON and mineral N were monitored at two cropped sites (Plaggic Anthrosols) and two fallow plots (Plaggic Anthrosol and Gleyic Podzol) from November 1999 till May 2001 by means of glass suction plates. The experimental sites were located near the city of Münster, NW Germany. Median DON concentrations in 90 cm depth were 2.3 mg l—1 and 2.0 mg l—1 at the cropped sites and 1.6 mg l—1 and 1.3 mg l—1 at the fallow sites. There was only a slight (Anthrosols) or no (Gleyic Podzol) decrease in median DON concentrations with increasing depth. Total N seepage was between 19 kg N ha—1 yr—1 and 46 kg N ha—1 yr—1 at the fallow sites and 16—159 kg N ha—1 yr—1 at the cropped sites. For the fallow plots, DON seepage contributed 10—21 % to the total N flux (4—5 kg DON ha—1 yr—1), at the cropped sites DON seepage was 6—21 % of the total N flux (6—10 kg DON ha—1 yr—1). Thus, even in highly fertilized agricultural soils, DON is a considerable N carrier in seepage that should be considered in detailed soil N budgets.  相似文献   
23.
Degassing of CO2 during collection of soil solution may alter the chemical composition of the solution, especially in well-buffered soils. We used a simple syringe extractor for field sampling of soil solution along with ambient soil air in order to test the influence of degassing of CO2 on solution pH in acid soils (Spodosol B and C horizons collected in Central Maine, USA). Soil air concentrations of CO2 varied from 0.36 to 1.35 ml l-1 during sampling immediately after snow melt. Degassing increased solution pH by 0.3 to 0.5 pH units. Both in-situ and degassed pH were predicted by the Reuss and Johnson soil chemical equilibrium model. The results suggest, (i) that the simple method is useful for determination of solution from wet soil under ambient soil air conditions and (ii) that degassing plays a significant role for soil solution chemistry even in Spodosol B and C horizons.  相似文献   
24.
25.
26.
Ammonia volatilization from slurry is undesirable because of environmental N eutrophication and loss of fertilizer value. The dry matter content of slurry, the application technique and the weather conditions are the main factors influencing NH3 losses from landspread slurry. In a field of winter wheat a two factor plot experiment was conducted to study single and combined effects of slurry separation and application techniques, including broadcast and banded application, as well as incorporation by injection and the flexible harrow. Ammonia volatilization from all treatments could be measured simultaneously, and at ambient climatic conditions by an indirect, open measurement technique. The experiment was repeated four times. Due to varying weather conditions and treatment effects, cumulative NH3 volatilization from the slurry during the first 48 hours ranged from 4 to 90% of total ammoniacal nitrogen (TAN). Both separation and incorporation significantly decreased NH3 losses, but only the combination of dry matter reduction and injection or harrowing reduced NH3 volatilization to about 30% of TAN in all weather conditions. Banding alone did not efficiently conserve slurry N, but even enhanced NH3 volatilization in wet conditions.  相似文献   
27.
Investigations on soil and freshwater acidification are usually focused on well-aerated systems. This study deals with the role of reductive processes for the neutralization of acid soil solution within helocrene springs. Two toposequences consisting each of three profiles (forest soil, margin of fen, fen) were established to study the chemistry of the solid phase (soil pH, CEC, pedogenic Fe- and Al-oxides) and the soil solution in two small spring catchments on three dates during 1991 and 1992. Despite high acid inputs and acidified forest soils the pH of the spring outflow is near neutral, and the soil solid phases of the spring fens are not acidified. The results support the following hypothesis: Aluminum with its corresponding anion sulfate is leached with the soil solution into the water-saturated fens. Dissimilatory iron and sulfate reduction take place within the fen and generate alkalinity. Reduced iron either reacts with sulfide to form pyrite or migrates within the fen profile and precipitates in the uppermost, oxic horizons, consuming part of the generated alkalinity. Due to the higher pH values in the fens the incoming aluminum precipitates releasing acidity. The alkalinity generated exceeds the amount of acidity released by oxidation and precipitation of iron and the precipitation of aluminum. A balance of alkalinity consuming and alkalinity generating processes based on solid phases showed that iron and sulfate reduction can account for at least 67% of the neutralization of acidity entering the fen of one of the catchments. Due to shorter water retention times and higher discharge these processes are of minor importance in the other catchment.  相似文献   
28.
Field aging immobilizes pollutants and reduces their toxicity, but it also boosts their accumulation and holds the risk of future release. We investigated the aging of six insecticides (water solubilities: 0.33 mg L (-1)-completely miscible) applied five times (10-day intervals) to a tropical fruit orchard under natural weather conditions. After sequential extractions of soil samples with 0.01 M CaCl 2, methanol (MeOH), and acetone/ethylacetate/water (AEW), a conventional ( K OC(app) = [ c(MeOH) + c(AEW)]/ c(CaCl 2), normalized to soil organic carbon) and a newly introduced distribution ratio (MAR = MeOH/AEW ratio; c(MeOH)/ c(AEW)) were calculated. Field half-lives of the insecticides correlated with K OC(app) but not with MAR, which might reflect that dissipation was significantly affected by abiotic processes. The extent of aging was related to hydrophobicity of the compounds and most pronounced for endosulfan (3-fold increase in K OC(app) within 84 days). For dimethoate, this increase was even steeper (5- to 10-fold within 10 days), which was, however, mostly caused by dissipation from labile pools rather than by aging. The K OC(app) of chlorpyrifos remained constant, but a significant decrease in MAR ( r = -0.78) revealed that sorption strength increased nevertheless. Results for malathion were ambiguous. Within the time frame of our study, neither K OC(app) nor MAR gave evidence for the aging of mevinphos. The different dynamics of K OC(app) and MAR for the six insecticides studied indicate that different aging mechanisms or rates, or both control the fate of the individual insecticides, which can potentially be revealed by sequential exctraction procedures.  相似文献   
29.
Increasing the phosphorus (P) saturation of sandy soils may cause an increase in the rate of transport of dissolved P to groundwater. We hypothesize that by increasing sorption of P, soil colloids such as iron (Fe) oxides are also mobilized, because the adsorption of P causes the surface charge to become more negative, which increases the repulsive forces between the colloids and the sand grains, and between the colloids in suspension. Goethite particles adsorbed to fine quartz sand and precipitated goethite coatings on coarse quartz sand were used as model systems to test this hypothesis. Soil samples from a Cambisol Bw horizon and a Gleysol Bg horizon were also investigated. We conducted a series of batch experiments with increasing concentrations of ortho‐P and inositol hexaphosphate (IHP). The adsorption of P and the dispersion of colloids were determined by measuring P, Fe, aluminium and carbon concentrations in supernatants before and after ultracentrifugation. Dispersed colloids were characterized according to their optical density, zeta potential and particle size. The addition of P caused mobilization of goethite and soil colloids when a critical P saturation, corresponding to a zeta potential of about ?20 mV, was exceeded. To induce colloid mobilization in soils, one to two orders of magnitude larger equilibrium concentrations of dissolved P were necessary, compared with those required for the model systems. The adsorption of IHP reduced the zeta potential of colloids more effectively than the adsorption of ortho‐P per mol P. Environmentally significant concentrations of colloidal P (> 0.1 mg P litre?1) were released from soil samples at equilibrium concentrations of dissolved P < 0.1 mg P litre?1. We conclude that the sorption and accumulation of P in sandy subsoils that might occur as a result of excessive fertilization might induce the mobilization of colloids and colloidal P.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号