首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   12篇
林业   3篇
农学   2篇
基础科学   1篇
  41篇
综合类   12篇
农作物   16篇
水产渔业   3篇
畜牧兽医   1篇
植物保护   4篇
  2023年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1992年   3篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1966年   1篇
  1957年   1篇
  1947年   1篇
  1945年   1篇
  1943年   1篇
  1941年   3篇
  1940年   1篇
  1937年   1篇
  1936年   3篇
  1928年   1篇
  1925年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
21.
This paper considers the development of lysimeters and their role in the evolution of our understanding of the dynamics of water and plant nutrients in ecosystems. Lysimeters are delineated volumes of soil. They can be divided into those filled with repacked soil, and those enclosing an undisturbed monolith. The original repacked lysimeter was developed to investigate the concept that all life stems from water, and is considered to be the first quantitative experiment in history. It focussed on the growth of a willow tree and how much of the increment was derived from the soil solids. From this start some 360 years ago lysimeters quickly contributed to the quantification of the transpiration stream and the differentiation of water loss by evaporation from the soil from loss via the leaves of plants. Chronologically, further development began about 210 years ago with the exploration of whether precipitation could account for all the water moving from the land to the oceans, and was the origin of springs. In part, this required a careful quantification of soil evaporation, runoff and deep drainage. This in turn led to the quantification of the soil water balance. As a result, we are able to predict indices, such as crop water use efficiency, drainage and irrigation requirements, contributions to stream flow, groundwater recharge and nutrient loss by leaching. Recognition that the quantification of drainage and leaching required soils of natural structure and profile integrity resulted in the building of the first monolith lysimeter and the development of ‘pan’ or ‘Ebermayer’ lysimeters. Improved technology allowed a better understanding of the role of soil in the regional water balance through the development of small diameter lysimeters that could be transported to a central location subject to the same climatic variables. In contrast, other technological changes allowed the impact of typical soil management operations carried out using regular machinery to be applied on field‐scale lysimeters. The contribution of the different types of lysimeter to the development of our understanding of soil use and management is considered.  相似文献   
22.
In late December 1990, a new radio source appeared near the center of our galaxy rivaling the intensity of Sgr A(*) (the compact radio source at the galactic center). Following its first detection, the flux density of the galactic center transient (GCT) increased rapidly to a maximum 1 month later, and then declined gradually with a time scale of about 3 months. Surprisingly, the GCT maintained a steep radio spectrum during both its rising and decay phases. The neutral hydrogen (HI) absorption shows similar absorption to that in front of Sgr A(*); this indicates that the GCT lies near the galactic center. Furthermore, both HI and OH observations show an additional deep absorption at +20 kilometers per second with respect to the local standard of rest. Thus, the GCT is either embedded in or located behind a molecular cloud moving with that velocity. The cloud can be seen on infrared images. Its opacity is shown to be inadequate to conceal a supernova near the galactic center. It is argued that the GCT was probably transient radio emission from synchrotron-radiating plasma associated with an x-ray binary system.  相似文献   
23.
24.
25.
26.
27.
28.
29.
In cropping systems, the choices adopted for the tillage system used and plants cultivated can strongly influence the soil microbial population and its functional profile. Arbuscular mycorrhizal fungi are an important component of soil microbiome and their mutualistic symbiosis with the majority of higher plants grant the latter a wide range of benefits. The extraradical mycelium developed by these fungi expands the volume of soil influenced and harbours a diversity of microbes establishing a distinct environment of complementary interactions. We assessed how growing plants with different levels of mycotrophy modifies the biological activity profile in the soil under Mn toxicity and whether this is modified by soil disturbance. Following mycotrophic plants, soil contained a more active microbiome than after the non-mycotrophic plants, as expressed by higher values of soil basal respiration or dehydrogenase activity. Additionally, the count of phosphorus solubilizes and activity of phosphatase were greater after mycotrophic plants. Even among mycotrophic plants, different profiles of biological activity can be distinguished after growing a legume or grass. ERM disruption by soil disturbance decreased most of the parameters studied and for phosphatase activity and P solubilizers in a more significant way. These results indicate that even under Mn toxicity, the microbiome associated with AMF symbiosis following mycotrophic plants growth presented a higher biological activity and had a differential biological response towards the stress imposed by soil disturbance, when compared with the microbiome associated with non-mycotrophic roots.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号