首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57030篇
  免费   3199篇
  国内免费   736篇
林业   3006篇
农学   2115篇
基础科学   690篇
  6566篇
综合类   12649篇
农作物   2276篇
水产渔业   2755篇
畜牧兽医   26632篇
园艺   877篇
植物保护   3399篇
  2022年   531篇
  2021年   709篇
  2020年   692篇
  2019年   844篇
  2018年   994篇
  2017年   1111篇
  2016年   936篇
  2015年   973篇
  2014年   1078篇
  2013年   2157篇
  2012年   1984篇
  2011年   2208篇
  2010年   1536篇
  2009年   1528篇
  2008年   1939篇
  2007年   1937篇
  2006年   1773篇
  2005年   1628篇
  2004年   1483篇
  2003年   1450篇
  2002年   1420篇
  2001年   1636篇
  2000年   1573篇
  1999年   1265篇
  1998年   475篇
  1997年   511篇
  1996年   486篇
  1995年   544篇
  1994年   478篇
  1993年   494篇
  1992年   936篇
  1991年   927篇
  1990年   917篇
  1989年   923篇
  1988年   871篇
  1987年   904篇
  1986年   891篇
  1985年   895篇
  1984年   724篇
  1983年   653篇
  1979年   647篇
  1978年   540篇
  1975年   502篇
  1974年   693篇
  1973年   605篇
  1972年   675篇
  1971年   671篇
  1970年   598篇
  1969年   590篇
  1967年   511篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Summary We studied the effect of three successive cuttings on N uptake and fixation and N distribution in Leucaena leucocephala. Two isolines, uninoculated or inoculated with three different Rhizobium strains, were grown for 36 weeks and cut every 12 weeks. The soil was labelled with 50 ppm KNO3 enriched with 10 atom % 15N excess soon after the first cutting. Except for the atom % 15N excess in branches of K28 at the second cutting, both the L. leucocephala isolines showed similar patterns of total N, fixed N2, and N from fertilizer distribution in different parts of the plant at each cutting. The Rhizobium strain did not influence the partitioning of 15N among the different plant parts. Significant differences in 15N enrichment occurred in different parts. Live nodules of both isolines showed the lowest atom % 15N excess values (0.087), followed by leaves (0.492), branches (0.552), stems (0.591), and roots (0.857). The roots contained about 60% of the total plant N and about 70% of the total N derived from fertilizer over the successive cuttings. The total N2 fixed in the roots was about 60% of that fixed in the whole plant, while the shoots contained only 20% of the fixed N2. We conclude that N reserves in roots and nodules constitute another N source that must be taken into account when estimating fixed N2 or the N balance after pruning or cutting plants. 15N enrichment declined up to about fivefold in the reference and the N2-fixing plants over 24 weeks following the 15N application. The proportion and the amounts of N derived from fertilizer decreased, while the amount derived from N2 fixation increased with time although its proportion remained constant.  相似文献   
992.
The effects of cement production on the elemental composition of soils in the neighborhood of two cement factories in Nigeria have been investigated using the XRF and PIXE/RBS techniques. The concentration of 21 elements viz:-Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Pb, As, Zr, Rb and Br, were determined in about 30 samples. Calcium, P, S, Cr, Ni, Cu and Zn, were found to be relatively enriched in the soils of the cement factory premises. Calcium, a cement marker element, was found to be well correlated with Mg, S, Fe, Ni and Cu in the soils, and inversely proportional to the Si and Ti concentrations. From Ca/Si ratios and enrichment factors of the marker elements, it was found that soil contamination due to cement drops sharply with distance from the factories, and with increasing depth from the surface.  相似文献   
993.
This review examines the interactions between soil physical factors and the biological processes responsible for the production and consumption in soils of greenhouse gases. The release of CO2 by aerobic respiration is a non‐linear function of temperature over a wide range of soil water contents, but becomes a function of water content as a soil dries out. Some of the reported variation in the temperature response may be attributable simply to measurement procedures. Lowering the water table in organic soils by drainage increases the release of soil carbon as CO2 in some but not all environments, and reduces the quantity of CH4 emitted to the atmosphere. Ebullition and diffusion through the aerenchyma of rice and plants in natural wetlands both contribute substantially to the emission of CH4; the proportion of the emissions taking place by each pathway varies seasonally. Aerated soils are a sink for atmospheric CH4, through microbial oxidation. The main control on oxidation rate is gas diffusivity, and the temperature response is small. Nitrous oxide is the third greenhouse gas produced in soils, together with NO, a precursor of tropospheric ozone (a short‐lived greenhouse gas). Emission of N2O increases markedly with increasing temperature, and this is attributed to increases in the anaerobic volume fraction, brought about by an increased respiratory sink for O2. Increases in water‐filled pore space also result in increased anaerobic volume; again, the outcome is an exponential increase in N2O emission. The review draws substantially on sources from beyond the normal range of soil science literature, and is intended to promote integration of ideas, not only between soil biology and soil physics, but also over a wider range of interacting disciplines.  相似文献   
994.
Fall Armyworm Damaged Maize Plant Identification using Digital Images   总被引:6,自引:0,他引:6  
The objectives of precision agriculture are profit maximisation, agricultural input rationalisation and environmental damage reduction, by adjusting the agricultural practices to the site demands. The fall armyworm (Spodoptera frugiperda) is one of the most important maize pests in Brazil and the use of insecticide is the main control method. It is believed that site-specific control can be implemented by using a machine vision system. The objective of this work was to develop and evaluate an algorithm at simplified lighting conditions for identifying damaged maize plants by the fall armyworm using digital colour images. Images of damaged and non-damaged maize plants were taken in eight different stages and in three different light intensities. The proposed algorithm had two stages: the processing and the image analysis. During the first stage, the images were processed to create binary images where the leaves were segmented from the other pixels. At the second stage, the images were subdivided into blocks and classified as ‘damaged’ or ‘non-damaged’ depending on the number of objects found in each block. The algorithm correctly classified 94·72% of 720 images.  相似文献   
995.
十种土壤有效磷测定方法的比较   总被引:29,自引:0,他引:29       下载免费PDF全文
卜玉山  MagdoffFR 《土壤学报》2003,40(1):140-146
Olsen[1 ] 、Bray Kurtz1 [2 ] 、Mehlich3[3] 、Morgan[4] 、Vermont1 [5] 和Vermont2 [5] 等法是用于确定土壤有效磷含量的主要常规方法。根据土壤有效磷测定结果可为农户提供施肥建议以及预测施用磷肥或家畜粪肥后的经济效益等[6]  相似文献   
996.
In order to understand the efficiency of residue-N use and to estimate the minimum input required to obtain a reasonable level of crop response, it is important to quantify the fate of the applied organic-N. The recovery of N from 15N-labelled Crotalaria juncea was followed in the soil and the succeeding maize crop. Apparent N recovery (ANR) by maize from unlabelled Crotalaria juncea, Crotalaria retusa, Calopogonium mucunoides, Mucuna pruriens and mineral fertilizer at three locations were also evaluated. The maize crop recovered 4.7% and 7.3% of the 15N-labelled C. juncea-N at 42 days after sowing (DAS) and at final harvest, respectively. The corresponding 15N recovery from the soil was 92.4% and 58.5%. The highest mean ANR of 57.4% was with mineral fertilizer, whereas the mean ANR of 14.3% from C. retusa was the lowest. A large pool substitution and added-N interaction effect was observed when comparing N recovery from the labelled and unlabelled C. juncea. The amount of residue-N accounted for by the isotope dilution method at 42 DAS was 97.1% and at final harvest 65.8%. The large residue-N recovery in the soil organic-N pool explains the residual effect usually observed with organic residue application.  相似文献   
997.
Previously, there has not been any in situ conservation sites for crop germplasm within the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Plant Germplasm System (NPGS). Using morphologic and molecular (SSR markers) techniques, we assessed the genetic variation present in populations of rock grape (Vitis rupestris Scheele), a native American grape species, throughout its range. We identified seven in situ conservation sites for rock grape using a strategy based on morphologic and molecular data, taxonomic information, population size and integrity, and landholder commitment. In collaboration with federal and state landholding agencies, we have established the first NPGS in situ conservation sites for American wild relatives of a crop.  相似文献   
998.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   
999.
Marigold flowers are the most important source of carotenoids for application in the food industry. However, the extraction gives almost 50% losses of the carotenoids depending on conditions for silaging, drying, and solvent extraction. In the past decades, macerating enzymes have been successfully applied to improve the extraction yield of valued compounds from natural products. In this work, an alternative extraction process for carotenoids is proposed, consisting of a simultaneous enzymatic treatment and solvent extraction. The proposed process employs milled fresh flowers directly as raw material, eliminating the inefficient silage and drying operations as well as the generation of hard to deal with aqueous effluents present in traditional processes. The process developed was tested at the 80 L scale, where under optimal conditions a carotenoid recovery yield of 97% was obtained.  相似文献   
1000.
Abstract. Continuous cultivation of soils of the semiarid tropics has led to significant land degradation. Soil erosion and nutrient loss caused by high runoff volumes have reduced crop yields and contributed to offsite damage. We compared a number of soil management practices (tillage, mulch and perennial/annual rotational based systems) for their potential to improve crop production and land resource protection in an Alfisol of the semiarid tropics of India. Runoff and soil erosion were monitored and surface soil and sediment were analysed for nitrogen and carbon to determine enrichment ratios. Amelioration of soils with organic additions (farmyard manure, rice straw) or rotating perennial pasture with annual crops increased soil carbon and nitrogen contents and reduced runoff, soil erosion and nutrient loss. Soil erosion totalled less than 7 t ha–1, but enrichment ratios were often greater than 2 resulting in up to 27 kg N ha–1 and 178 kg C ha–1 being lost in sediment. Up to an extra 250 mm of water per year infiltrated the soil with organic additions and was available for crop water use or percolation to groundwater. The results show that there are good opportunities for reducing degradation and increasing productivity on farms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号