首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   3篇
林业   27篇
农学   1篇
基础科学   1篇
  26篇
综合类   9篇
农作物   2篇
水产渔业   12篇
畜牧兽医   7篇
园艺   5篇
植物保护   4篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2014年   6篇
  2013年   5篇
  2012年   2篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2006年   5篇
  2005年   8篇
  2004年   7篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有94条查询结果,搜索用时 31 毫秒
11.
The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.  相似文献   
12.
Juha Heiskanen 《New Forests》2013,44(1):101-118
Sphagnum peat has been the most commonly used growing medium in containers in tree nurseries worldwide for its good growing properties. As a result of increasing costs and environmental incentives, seedling-growers are seeking more local growing medium components such as composts. Composts are, however, diverse products with varying chemical, physical, and hygienic properties and therefore require thorough testing before real-world use. In this study, a commonly used compost (raw materials: sewage sludge, biowaste, peat, wood chips) was tested for feasibility as a component (0–30 vol.%) of a sphagnum peat container medium for growing Norway spruce (Picea abies (L.) Karst.) container seedlings in a forest-tree nursery. In proportions of up to 30% in peat, the compost additive used was shown to be a feasible material for seedling growing in forest nurseries. On average, the seedlings grew best in pure peat, but the compost additions to peat showed no marked reduction in seedling growth in greenhouses, nor were there any effect on seedling growth in the first summer after outplanting. However, a slightly elevated risk of seed non-germination and of seedling mortality was observed when the growing media contained compost in proportions of 20% or more. The compost additive in peat also changed the bulk density, structure, and chemical properties of the medium during nursery growing. The results suggest that seedling watering and fertilisation should be adjusted for each growing medium mix separately to achieve correct water, oxygen, and nutrient availability in containers during nursery growing.  相似文献   
13.
The aim of this work was to examine how well species-specific stand attributes can be predicted using a combination of airborne laser scanning (ALS) and existing stand register data in urban forests. In this context, the ability of three data combinations: ALS data and stand register data, ALS data and digital aerial images and all of these combined, was tested in the prediction of species-specific basal areas. We divided tree species into seven and three different tree species strata and applied two prediction methods: (1) regression method, in which the predicted total basal area was divided into tree species based on tree species proportions from stand register data, and (2) the nearest neighbour (NN) method, in which tree species proportions were used as predictor variables for species-specific basal areas. Prediction models were built based on training data of 205 field plots, and the accuracy of the models was tested based on validation data of 52 forests stands. Our results showed that species-specific predictions of seven tree species were more accurate when tree species proportions from stand register data were used in the prediction. Both the regression and the NN method provided reasonable accuracy. This study showed that tree species information from existing stand register data could be used as an alternative for aerial images in ALS-based forests inventories. The use of ALS data together with stand register data and small field data could also be economically beneficial in an inventory of urban forests.  相似文献   
14.
The fact that the intraspecific genetic differentiation in neutral genetic markers and genes coding for adaptive traits are not typically correlated has caused a great deal of conceptual and practical trouble in delimitation of conservation units. Although the importance of combining information on adaptive genetic divergence with information on historical and recent gene flow in the delimitation of conservation units has been recognized, integrated empirical studies to this end are still rare. We explored the evidence for the specific conservation status of two freshwater three-spined stickleback (Gasterosteus aculeatus) populations on the Adriatic side of the Balkan Peninsula by comparing their phenotypic and genetic characteristics to those of other representative European populations. Apart from focusing on the neutral genetic divergence in mitochondrial DNA sequences and microsatellite markers, we also compared the patterns of morphological differentiation (i.e. bony armour development) resulting from adaptation to freshwater environments. The Balkanic populations formed two distinct groups with regard to neutral genetic variation and had the least developed bony armour of all the examined populations. All morphometric analyses identified the two Balkanic populations as phenotypically – and hence most likely also ecologically – clearly distinct from other European three-spined stickleback populations. These results suggest that the two Balkanic populations (River Neretva and River Zeta) fulfil the most stringent criteria (i.e. lack of genetic and ecological exchangeability) to be classified as conservation units distinct from other European three-spined stickleback populations.  相似文献   
15.
Cannibalism is a taxonomically widespread phenomenon that can fundamentally affect the structure and stability of aquatic communities, including the emergence of a bimodal size distribution (“dwarfs” and “giants”) in fish populations. Emergence of giants could also be driven or facilitated by parasites that divert host resources from reproduction to growth. We studied the trophic ecology of giant nine‐spined sticklebacks (Pungitius pungitius) in a Finnish pond to evaluate the hypotheses that gigantism in this population would be facilitated by cannibalism and/or parasitic infections by Schistocephalus pungitii cestode. Stomach content analyses revealed an initial ontogenetic dietary shift from small to large benthic invertebrates, followed by cannibalism on 10–20‐mm‐long conspecifics by giant individuals. However, stable nitrogen isotopes (δ15N) indicated a concave relationship between fish size and trophic position, with relatively low trophic position estimates suggesting only facultative cannibalism among giants. The unexpectedly high trophic position of the intermediate‐sized fish may reflect substantial, but temporary, predation on eggs or young‐of‐the‐year conspecifics, but may also partly result from starvation caused by S. pungitii infection. However, it seems implausible that parasitic infections (i.e. castration) would explain gigantism among nine‐spined sticklebacks because all >100‐mm giants were unparasitised. Hence, the present results suggest that an ontogenetic niche shift from an invertebrate diet to intercohort cannibalism may facilitate the occurrence of gigantism in nine‐spined sticklebacks.  相似文献   
16.
Protozoa stimulate plant growth, but we do not completely understand the underlying mechanisms, and different hypotheses seek to explain this phenomenon. To test these hypotheses, we grew the grass Yorkshire fog (Holcus lanatus) in pots with soil, which contained either (1) no organisms but bacteria – or (2) bacteria and protozoa. Half of the pots received a glucose treatment so as to mimic an additional root exudation. We measured plant growth and plant nitrogen uptake, along with various microbial pools and processes that support plant growth. Protozoan presence significantly enhanced soil nitrogen mineralization, plant nitrogen uptake from organic nitrogen sources, plant nitrogen content, and plant growth. By contrast, we found no evidence that glucose addition, mimicking root exudation, increased soil nitrogen availability and plant nitrogen uptake. Moreover, although protozoan presence affected bacterial community structure, it did not affect the proportion of IAA-producing bacteria in the community or plant root morphology. These results refute the “soil microbial loop” hypotheses, which suggest that protozoan stimulation of plant growth results from complex interactions between plant roots, bacteria and protozoa. Our experiment thus favours the simple explanation that increased nitrogen availability is the key factor behind the positive protozoan effect on plant growth. To exploit natural resources in an efficient and environmentally friendly way, we need to understand in detail the functioning of ecosystems. This study stresses that to achieve this, it is still urgent, besides investigating intricate food-web and signal compound interactions, also to focus on the basic stoichiometric and energetic aspects of organisms.  相似文献   
17.
18.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   
19.
Winfried Schröder  Stefan Nickel  Simon Schönrock  Roman Schmalfuß  Werner Wosniok  Michaela Meyer  Harry Harmens  Marina V. Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Oleg Blum  Alejo Carballeira  Maria Dam  Helena Danielsson  Ludwig De Temmermann  Anatoly M. Dunaev  Barbara Godzik  Katrin Hoydal  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Jussi Lindroos  Siiri Liiv  Sigurður H. Magnússon  Blanka Mankovska  Encarnación Núñez-Olivera  Juha Piispanen  Jarmo Poikolainen  Ion V. Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko Špirić  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Ivan Suchara  Lotti Thöni  Hilde Thelle Uggerud  Harald G. Zechmeister 《Annals of Forest Science》2017,74(2):31

Key message

Moss surveys provide spatially dense data on environmental concentrations of heavy metals and nitrogen which, together with other biomonitoring and modelling data, can be used for indicating deposition to terrestrial ecosystems and related effects across time and areas of different spatial extension.

Context

For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor.

Aims

This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3).

Methods

Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method.

Results

It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven.

Conclusion

Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.
  相似文献   
20.
The objective was to compare tree-level airborne laser-scanning (ALS) data accuracy with standwise estimation data accuracy as input data for forest planning, using tree- and stand-level simulators. The influence of the input data accuracy was studied with respect to (1) timing of the next thinning or clear-cutting and (2) the relative variation in the predicted income of the next logging expressed as the net present value (NPV). The timing and predicted NPV of thinning and clear-cutting operations were considered separately. The research was based on Monte Carlo simulations carried out with the tree- and stand-level simulators using a simulation and optimisation (SIMO) framework. The simulations used treewise measurements taken on 270 circular plots measured at the Evo Field Station, Finland, as input data. Deviations in the tree data measured were generated according to the mean standard errors found in standwise field estimation and tree-level ALS. The accuracy factors of ALS individual tree detection were based on the EUROSDR/ISPRS Tree Extraction Project. The results show that input data accuracy significantly affects both the timing and relative NPV of loggings. Tree-level ALS produces more accurate simulation results than standwise estimation with the error levels assumed. Diameter-based characteristics are the most important input data in all simulations. Accurate tree height estimates cannot be fully utilised in current simulators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号