首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6464篇
  免费   3363篇
林业   176篇
农学   426篇
  1323篇
综合类   18篇
农作物   95篇
水产渔业   2488篇
畜牧兽医   4031篇
园艺   6篇
植物保护   1264篇
  2023年   6篇
  2022年   10篇
  2021年   130篇
  2020年   473篇
  2019年   1030篇
  2018年   901篇
  2017年   936篇
  2016年   927篇
  2015年   809篇
  2014年   797篇
  2013年   965篇
  2012年   469篇
  2011年   468篇
  2010年   601篇
  2009年   251篇
  2008年   232篇
  2007年   68篇
  2006年   101篇
  2005年   92篇
  2004年   95篇
  2003年   92篇
  2002年   100篇
  2001年   67篇
  2000年   98篇
  1999年   7篇
  1997年   14篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1986年   2篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1980年   2篇
  1978年   7篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1970年   4篇
  1941年   1篇
  1939年   1篇
  1938年   1篇
  1937年   1篇
排序方式: 共有9827条查询结果,搜索用时 15 毫秒
981.
Objective of this study was to compare the heat stress performance of four pulses from dry and hot areas (mungbeans, limabeans, and teparybeans and cowpeas) with that of soybeans. Two experiments were conducted in growth chambers, and data were pooled because results of both experiments were similar. Plants were raised up to flowering at 24/17 °C (day/night) and were then either exposed to these temperatures until maturity or stressed with 33/24 °C for 2 weeks starting at day 1 or 15 after onset of flowering (early vs. late stress). Before, during and after these stress intervals, gas exchange of representative upper leaves was examined; additionally, immediate effects of increasing leaf temperatures from 24 to 32 or 40 °C on chlorophyll fluorescence were assessed. Without heat stress rates of photosynthesis (Pn), and of transpiration (TR), stomatal and mesophyll conductance (gs, gm) and intrinsic transpiration efficiency (iTE) differed significantly among the five crops at each date. However, because of crop‐specific time‐courses ranking among unstressed crops was instable with time, so values were integrated or averaged over time. This procedure revealed high Pn potentials in mung‐ and teparybeans and high iTE values in limabeans compared to the other crops. Heat stress lowered Pn and gs considerably, but increased TR in all five crops. Relative lowering of Pn during heat stress displayed a crop‐specific pattern with limabeans being least susceptible to both early and late heat stress, while cowpeas were highly susceptible to early stress. Effects on Pn were mainly attributable to lowering of gs and only in part to gm. The latter was supported by very small changes (<10 %) of various chlorophyll fluorescence signals shortly after raising leaf temperature to 32 °C in all species. However, in limabeans, a decreased electron transport rate (e‐rate, ?18 %) and an increased non‐photochemical quenching (QN, +16 %) pointed to an adaptive mechanism to avoid oxidative strains under heat. Leaf temperatures of 40 °C immediately provoked stronger changes in all fluorescence signals than 32 °C; substantial damages at 40 °C were indicated by effective quantum yield, photochemical quenching and ratio of fluorescence decrease in mungbeans and low ones in cowpeas and soybeans. Nevertheless, some adaptive responses of e‐rates and QN were observed in all crops and were most expressed in limabeans.  相似文献   
982.
The olive (Olea europaea) is one of the most important oleaginous crops of the Mediterranean basin. Increased demand for olive oil creates a need for new olive varieties to help meet the requirements of the global market. However, olive breeding has been handicapped by such varied challenges as a prolonged juvenile period, agrotechnical problems and insufficient genetic knowledge. The use of DNA markers has the potential to overcome these problems and increase the effectiveness of classical breeding programmes. In this study, co‐dominant polymorphic simple sequence repeats (SSRs) were used as markers to analyse the genetic relationships between several local and other ‘non‐native’ olive cultivars. Cluster analysis revealed four major groups among the 15 cultivars examined in this study. Table and oil cultivars were clustered in different groups. However, the clusters did not differentiate between cultivars of different geographical origins. In addition, we used the data gathered to analyse genetic relationships to evaluate the effects of heterosis in agricultural traits. Genetic distances between cultivars were determined based on the SSR genotype data and were used for evaluating the possible effects of heterosis in various F1 populations. Interestingly, phenotypic data of F1 progenies from crosses between different cultivars indicated the potential effects of heterosis as expressed in several traits. Genetic distance between parents was significantly correlated to F1 performance for three traits: percentage of dry fruit weight, oil content and commercial oil production. Thus, crosses between olive cultivars exhibiting relatively extensive genetic distances one from the other are expected to result in better progeny performance in future Olea breeding programmes. Our study linked assessment of biodiversity of commercial olive cultivars with the application of this information in olive breeding programmes for selection of specific parents to generate superior new cultivars.  相似文献   
983.
984.
985.
In Bolivia, one of the world’s most important centres of plant domestication, there is growing awareness of the value of native Andean crops, both for domestic consumption and for market sale – notably the virtually boom‐like consumer demand for quinoa around the world. The southern altiplano of Bolivia, south of Oruro, relies almost purely on the production of quinoa and breeding of llamas, which have also been selected as the two commodities of priority to the government to increase the income of the country. Presently, however, quinoa is facing increasing problems in production, owing to its increasing export market and price. The flat areas around the salt desert of the southern altiplano, previously characterized by natural vegetation fed by the llamas, are being increasingly sown with quinoa, hence transformed into deserts, because intensive cultivation methods make the soil loose its fertility. Possible solutions to these problems will require extensive efforts in the south, in addition to various strategies, which also include other parts of the Bolivian altiplano and a strengthened focus on other Andean crops.  相似文献   
986.
The effects of various copper (Cu) concentrations on the antioxidative system in the roots of Medicago sativa were explored. The results indicated that the Cu content of the roots reached a value of 854 μg g?1 DW at 10 μm Cu and a value of 4415 μg g?1 DW at 100 μm Cu, suggesting that M. sativa has better ability to tolerate and accumulate Cu than other Cu‐bioaccumulators, and is a potential plant for phytoremediation. Treatment with Cu resulted in a significant increment in the levels of H2O2, O2˙? and OH˙. The reduced form of ascorbate and glutathione reached a peak at 30 μm Cu, and was followed by a sharp depletion to a lower level than that of the control. In contrast, the levels of the oxidised forms of ascorbate and glutathione showed a progressive increment with increasing Cu concentrations, suggesting that the antioxidant system was unable to cope with Cu stress at higher Cu levels. Under the Cu concentrations tested, the activity of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) increased at lower Cu concentrations, and then decreased, reaching a maximum at 30 μm of Cu for APX and GR, at 10 μm for CAT, whereas the activities of guaiacol peroxidase (POD, EC 1.11.1.7) were gradually increased with increasing Cu concentrations. PAGE analysis of superoxide dismutase (SOD, EC 1.1.5.1.1) revealed that one band is a Mn‐SOD and five bands are identified as Cu, Zn‐SOD, whereas Fe‐SOD isoforms were not found in the roots of alfalfa. Cu at 10–100 μm increased the intensity of constitutive isozymes of CAT, APX and POD, whereas it decreased the intensity of isozymes of glucose‐6‐phosphate dehydrogenase (G6PDH, EC 1.1.1.49) significantly. The activities of lipoxygenases (LOX, EC 1.13.11.12) were gradually augmented with increasing Cu concentrations, demonstrating that LOXs are probably involved in production of lipid hydroperoxides and superoxide anion. There was a continuous and pronounced enhancement in the activity of esterase (EST, EC 3.1.1.1) in roots treated with 10–30 Cu μm , whereas EST activity in roots exposed to above 30 μm Cu declined, suggesting that EST plays a protective role under lower Cu concentrations stress.  相似文献   
987.
Rice plants cope with flash floods using either an ‘escape strategy’ involving rapid shoot elongation or a ‘quiescence strategy’ involving survival underwater with minimal activity. To clarify the differences in the response of leaf photosynthesis properties to conditions during and after submergence, two rice cultivars were compared: a non‐shoot‐elongating cultivar IR 67520‐B‐14‐1‐3‐2‐2 (IR67520) and a shoot‐elongating cultivar IR72442‐6B‐3‐2‐1‐1 (IR72442). Twenty‐three‐day‐old seedlings were submerged in 80‐cm‐deep water for 14 days. During submergence, the chlorophyll contents of the upper fully expanded leaf (5th leaf) and newly developed leaf later (6th leaf) and the maximal quantum yield of photosystem II (Fv/Fm) of the fifth leaf decreased earlier in IR72442 than in IR67520. In the submerged sixth leaf, Fv/Fm was higher in IR72442 than in IR67520 at early measurement. Although Fv/Fm of the sixth leaf in submerged IR67520 increased substantially from 2 days post‐submergence, IR72442 decreased because of leaf chlorosis. Therefore, a non‐shoot‐elongating cultivar coped with submergence by inhibiting photodamage and maintaining high chlorophyll content in the leaves. The shoot‐elongating cultivar was able to maintain the photosynthetic capacity of the newly developed leaf during submergence by prompt reduction of chlorophyll and chlorophyll fluorescence in the leaf that developed before submergence.  相似文献   
988.
989.
The Mekong River system provides a crucial source of natural resources for riparian nations. However, the increasingly rapid pace of hydro‐development in the Mekong Basin is threatening the integrity of the river system, posing a real concern for Lower Basin states, which are particularly dependent on the basin. This scenario has led to warnings of armed conflict, or even ‘water war’, between riparian states. Certainly, the expanding scale of hydro‐development can be expected to continue increasing interstate tensions in the Mekong region; but are these tensions really likely to escalate to armed conflict? This paper explores this question by drawing on the water and conflict theory of Aaron Wolf. Ultimately, this paper concludes that interstate tensions over Mekong hydro‐development are unlikely to generate armed conflict. This is in part due to the strategic impracticality of such a conflict as well as the presence of a river basin management institution. Most compellingly, though, armed conflict is unlikely because the economic imperative shared by Mekong states is better served by cooperation – or at least non‐interference – than conflict, over regional hydro‐development. In closing, the paper urges that the study of water and conflict in the Mekong Basin be refocused at the intrastate level.  相似文献   
990.
The objectives of this study were to investigate (i) the correlations between Fusarium head blight (FHB) index, deoxynivalenol (DON) accumulation and percentage of Fusarium‐damaged kernels (FDK) with agronomic and quality traits and (ii) the effect associated with the presence of single QTLs for FHB resistance on agronomic and quality traits in winter wheat. The population was derived from the cross between ‘RCATL33' (FHB resistance derived from ‘Sumai 3’ and ‘Frontana’) and ‘RC Strategy’. Parental lines and recombinant inbred lines (RILs) were genotyped with SSR markers associated with the 3B, 5A and 3A QTLs. The population was planted in FHB‐inoculated nurseries and in agronomy trials. Lines in the 3B QTL class had the lowest FHB index, DON content and FDK level and did not have a significantly lower yield, thousand kernel weight or protein content compared with the lines grouped in other QTL classes (including no QTL class). Marker‐assisted selection of the 3B QTL for FHB resistance into high‐yielding FHB‐susceptible winter wheat is the recommended approach for the development of lines with increased FHB resistance without significant yield and quality penalties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号