首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   8篇
  国内免费   3篇
林业   26篇
农学   16篇
基础科学   3篇
  185篇
综合类   32篇
农作物   14篇
水产渔业   17篇
畜牧兽医   21篇
园艺   6篇
植物保护   16篇
  2022年   5篇
  2021年   3篇
  2020年   14篇
  2019年   7篇
  2018年   4篇
  2017年   9篇
  2016年   15篇
  2015年   7篇
  2014年   8篇
  2013年   30篇
  2012年   4篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   25篇
  2007年   10篇
  2006年   5篇
  2005年   16篇
  2004年   5篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
81.
The West Asia–North Africa (WANA) region has a land area of 1.7 billion ha, and a population of 600 million. Desertification and soil degradation are severe problems in the region. The problem of drought stress is exacerbated by low and erratic rainfall and soils of limited available water holding capacity and soil organic carbon (SOC) content of less than 0.5 per cent. The SOC pool of most soils has been depleted by soil degradation and widespread use of subsistence and exploitative farming systems. The historic loss of a SOC pool for the soils of the WANA region may be 6–12 Pg compared with the global loss of 66–90 Pg. Assuming that 60 per cent of the historic loss can be resequestered, the total soil‐C sink capacity of the WANA region may be 3–7 Pg. This potential may be realized through adoption of measures to control desertification, restore degraded soils and ecosystems, and improve soil and crop management techniques that can enhance the SOC pool and improve soil quality. The strategies of soil‐C sequestration include integrated nutrient management (INM) and recycling, controlled grazing, and growing improved fodder species on rangeland. Improved technologies for cropland include use of INM and biofertilizers, appropriate tillage methods and residue management techniques, crop rotations and cover crops, and water and nutrient recycling technologies. Through adoption of such measures, the potential of soil‐C sequestration in the WANA region is 0.2–0.4 Pg C yr−1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
82.
Land configuration in combination with nutrient management has the potential to improve the productivity of Alfisols and Vertisols in the semi-arid tropics. A four year (1989–1990 and 1992–1993) field experiment was conducted at Coimbatore, India on Alfisols (Chromic Cambisol) to compare the effect of land configuration and nutrient management practices on yield of rainfed sorghum (Sorghum bicolor (L.) Moench). The land configuration treatments were flat bed (FB, the traditional practice), open ridging (OR, ridges, 45 cm apart and 30 cm high) and tied ridging (TR, same as OR plus ridges were tied randomly). The manure and fertilisers were farm yard manure (FYM, livestock excreta plus litter at 5 Mg ha−1) and coir dust (CD, by-product after the extraction of coir from the coconut (Cocos nucifera L.) husk at 12.5 Mg ha−1) in combination with nitrogen (N) and phosphorus (P) fertiliser levels. Tied ridges stored 14% more soil water and produced 14% and 11% more grain and straw yields of sorghum, respectively, than did flat bed. However, crop yield in TR was comparable with OR. Application of CD at 12.5 Mg ha−1 combined with 40 kg N ha−1 and 9 kg P ha−1 was beneficial for more soil water storage and increased yield of sorghum by 7% over FYM at 5 Mg ha−1 + 40 kg N ha−1 and 9 kg P ha−1. In Vertisols (Vertic Cambisols), experiments were conducted for two years (1991–1992 and 1992–1993) to evaluate land configuration practices. The treatments were broad bed furrow (BBF, 120 cm wide bed with 30 cm wide and 15 cm deep furrows on both sides), compartmental bunding (CB, bunds of 15 cm height formed in all the four sides to form a check basin of 6 m × 5 m size), ridging (RD, ridges were formed for each and every row of the crop manually at four weeks after sowing) and FB under sorghum + pigeonpea (Cajanus cajan (L.) Millsp) and pearl millet (Pennisetum glacum (L.) Stuntz) + cowpea (Vigna unguiculata (L.) Walp) intercropping separately. Compartmental bunding stored 22% more soil moisture and increased the yield of sorghum + pigeonpea intercropping than did FB in a low rainfall year. In a high rainfall year, BBF produced 34% and 33% more grain yield of sorghum and pearl millet base crops, respectively, over FB. However, BBF and CB were comparable. Pigeonpea intercrop under sorghum followed the same trend as its base crop, whereas, yield of cowpea differed compared to the pearl millet base crop. Tied ridging and application of manures (CD or FYM) in combination with inorganic N and P fertiliser can increase the soil water storage and yield of crops compared to traditional flat bed cultivation in rainfed Alfisol and related soils of semi-arid tropics. Similarly BBF and CB land configuration practices could be adopted on Vertisols for better water conservation to increase the soil fertility and productivity of intercropping systems.  相似文献   
83.
A total of 15 years of experimentation period (1995–2010) was divided into two phases. In the first phase (1995–2005), five mango based agri-horticultural models (AHM) viz. Mango + cowpea–toria, mango + cluster bean/okra–toria, mango + sesame–toria, mango + black gram–toria and mango + pigeon pea in addition to sole mango plantation (no intercrop) and in second phase (2005–2010), two mango based AHM (mango + colocasia and mango + turmeric) in addition to sole mango (no intercrop) were studied. The mean maximum cowpea equivalent yield (t ha?1) was harvested from cowpea (1.84) followed by okra (1.21), black gram (1.11), sesame (0.68) and mean minimum with pigeon pea (0.58). The crop yield reduction among the mango based AHM was observed from third year to tenth year. The positive correlation was found between light transmission and intercrops yields amongst all models during both phases. However, the correlation between mango canopy spread and intercrop yields shown negative trends. The yield reduction in intercrops varied from 37.0–52.6 % during first phase and 20.6–23.5 % during second phase of experimentation compared to sole crop. The results revealed that the fruit based AHM were effective in improving fruit yields of the mango. The mean maximum fruit yield of mango (7.02 t ha?1) was harvested with cowpea–toria crop rotation followed by black gram–toria (6.59 t ha?1) and minimum fruit yield (5.76 t ha?1) realized with sole mango tree during first phase (1999–2005). Likewise, mean maximum fruit yield (13.71 t ha?1) from mango tree was obtained in the turmeric block followed by (13.00 t ha?1) in colocasia block and minimum fruit yield with sole mango tree (11.86 t ha?1). All the treatments of AHM recorded higher soil moisture as compared to sole mango plantation during both phases. The moisture retention under different AHM was in the order of cowpea (13.32 cm) > black gram (13.29 cm) > pigeon pea (13.27 cm) > okra (12.42 cm) > sesame (12.17 cm) > sole mango (11.62 cm) during first phase, whereas moisture retention was observed in the order of turmeric (14.20 cm) > colocasia (14.01 cm) > sole mango (12.60 cm) during second phase. The cowpea–toria crop rotation with mango gave maximum benefit: cost ratio followed by okra–toria under rainfed conditions. Besides economic viability of cowpea–toria with mango, this system had improved tree growth as well as fruit yield of mango. In the second phase, mango + turmeric yielded more benefit than mango + colocasia system. In the first phase, the mango + cowpea–toria system improved organic carbon, total nitrogen, phosphorus, potash and reduced pH by 49.0, 56.3, 48.6, 58.5 and 11.6 %, respectively as compared to initial values whereas mango + turmeric system increased organic carbon, nitrogen, phosphorus, potash and reduction in pH by 51.0, 45.0, 29.7, 29.0 and 3.4 %, respectively over initial values within soil depths of 0–30 cm during second phased. Mango based AHM is recommended for adoption with selective intercrops up to 15 years of age of mango plantation for multiple outputs and good economic viability without impairing site fertility.  相似文献   
84.
Plasmodium vivax is one of the four malaria parasites that cause disease in humans. The structure of the immunodominant repeating peptide of the circumsporozoite (CS) protein of P. vivax was determined. A fragment of P. vivax DNA that encodes this tandemly repeating epitope was isolated by use of an oligonucleotide probe whose sequence is thought to be conserved in CS protein genes. DNA sequence analysis of the P. vivax clone indicates that the CS repeat is nine amino acids in length (Gly-Asp-Arg-Ala-Asp-Gly-Gln-Pro-Ala). The structure of the repeating region was confirmed with synthetic peptides and monoclonal antibodies directed against P. vivax sporozoites. This information should allow synthesis of a vaccine for P. vivax that is similar to the one being tested for P. falciparum.  相似文献   
85.
This study was conducted to investigate the effect of inorganic nitrogen (N) and root carbon (C) addition on decomposition of organic matter (OM). Soil was incubated for 200 days with nine treatments (three levels of N (no addition (N0) = 0, low N (NL) = 0.021, high N (NH) = 0.083 mg N g−1 soil) × three levels of C (no addition (C0) = 0, low C (CL) = 5, high C (CH) = 10 mg root g−1 soil)). The carbon dioxide (CO2) efflux rates, inorganic N concentration, pH, and potential activities of β-glucosidase and oxidative enzyme were measured during incubation. At the beginning and the end of incubation, the native soil organic carbon (SOC) and root-derived SOC were quantified by using a natural labeling technique based on the differences in δ 13C between C3 and C4 plants. Overall, the interaction between C and N was not significant. The decomposition of OM in the NH treatment decreased. This could be attributed to the formation of recalcitrant OM by N because the potentially mineralizable C pool was significantly lower in the NH treatment (3.1 mg C g−1) than in the N0 treatment (3.6 mg C  g−1). In root C addition treatments, the CO2 efflux rate was generally in order of CH > CL > C0 over the incubation period. Despite no differences in the total SOC concentration among C treatments, the native SOC in the CH treatment (18.29 mg C g−1) was significantly lower than that in the C0 treatment (19.16 mg C g−1).  相似文献   
86.
R. Lal 《Geoderma》1976,16(5):377-387
The effects of four rates of straw mulching on runoff and soil loss were compared with those of no-tillage treatments under natural rainfall conditions using field runoff plots of 25 × 4 m established at 1, 5, 10 and 15% slopes on the International Institute of Tropical Agriculture (IITA) research site near Ibadan, Nigeria. The four rates of straw mulching were 0, 2, 4 and 6 t/ha. The mean annual runoff was 50, 10, 4 and 2% of the total annual rainfall for mulch rates of 0, 2, 4 and 6 t/ha, respectively. Runoff from unmulched treatments was not related to slope. Runoff loss from no-till treatments was only 2% of the rain received. The mean soil losses for the rainstorms greater than 25 mm were 143, 16, 2 and 0.4 kg/ha per mm of rain received for mulched rates of 0, 2, 4 and 6 t/ha, respectively. The soil loss declined exponentially with increasing mulch rate with exponents ranging from approximately ?0.3 to ?0.7. The soil losses from the no-till plots were equal to those from plots that received mulch at the rate of 6 t/ha. Soil erodibility was significantly influenced by time after clearing, with maximum K reached two to three years after forest removal. The nutrient loss in runoff and eroded soil was significant only for unmulched treatments. The maximum annual loss of NO3-N in runoff was about 15 kg/ha. The maximum annual loss of total N in eroded soil from unmulched plots was about 180 kg/ha, that of P, 5 kg/ha, and that of K, about 14 kg/ha.  相似文献   
87.
Water management in various crop production systems related to soil tillage   总被引:2,自引:0,他引:2  
Soil tillage, of different types and intensity and performed at different antecedent soil moisture conditions, is an important tool for agricultural water management. Tillage systems have important applications for increasing irrigation efficiency, enhancing the effectiveness of drainage systems, improving water quality, decreasing runoff losses and minimizing soil erosion, increasing runoff losses for water harvesting and supplemental irrigation, and decreasing percolation losses and creating aquatic environments for rice cultivation. The versatility and diversity of applications of tillage systems depend on the choice of tillage techniques. No-tillage methods with residue mulches are useful to conserve soil water. Chisel tillage and subsoiling methods along with ridge-tillage techniques are useful in increasing irrigation efficiency. No-tillage systems are useful in decreasing sediment density and transport of sediment laden pollutants in runoff, and puddling and wet tillage techniques or soil compaction are used in rice cultivation. Finally soil compaction and techniques to increase water repellence are useful for water harvesting for subsequent use in supplemental irrigation.  相似文献   
88.
Field experiments were conducted on a tropical Alfisol at Ibadan, Nigeria, to evaluate the effects on soil moisture and crop yields of three agroforestry systems. Effects of agroforestry treatments involving two perennial shrubs (Leucaena leucocephala and Gliricidia sepium), each at 2-m and 4-m row spacings, were compared with no-till and plow-till systems of seedbed preparation. Measurements were made for soil properties, runoff and erosion, nutrient losses in runoff, and crop growth and yield for a uniform maize (Zea mays) and cowpea (Vigna unguiculata) rotation. All of the six plots, each measuring 70 × 10m, were established on a natural slope of about 7%. Alterations in soil properties and effects on crop growth were evaluated for six consecutive years from 1982 through 1987.Seed germination and seedling establishment of Leucaena hedgerows were satisfactory while establishment of Gliricidia from stem cuttings was unsatisfactory. Maize germination and crop stand were normal while that of cowpea were suppressed by both Leucaena and Gliricidia. Maize growth and yield were suppressed only in the vicinity of hedgerows. Maize grain yield in agroforestry systems averaged about 10 percent lower than that of the control. In contrast with maize, agroforestry systems drastically suppressed cowpea grain yield. The average cowpea yield in agroforestry systems was 30 to 50% of the control. Regardless of the mangement system, grain yields declined over time at the rate of 340 and 96 kg ha–1yr–1 for maize and cowpea, respectively.Hedgerows of Leucaena and Gliricidia acted as windbreaks. Consequently, soil moisture content in the top 0–5 cm layer in agroforestry systems was generally higher than that in the control during both wet and dry seasons.  相似文献   
89.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool.  相似文献   
90.
The possible anti-inflammatory activity of the 90% ethanolic extract of Dalbergia sissoo leaves (DSELE) was studied in different models of inflammation in rats after oral administration at doses of 100, 300 and 1000 mg/kg. DSELE significantly inhibited carrageenin, kaolin and nystatin-induced paw oedema, as well as the weight of granuloma induced by a cotton pellet. It also inhibited dye leakage in acetic acid-induced vascular permeability test in mice. DSELE was devoid of ulcerogenic effect on the gastric mucosa of rats in acute and chronic tests. In acute toxicity studies, it was found to be safe up to 10.125 g/kg, p.o. in the rat. It was concluded that the D. sissoo leaf extract possessed significant anti-inflammatory activity (in acute, sub-acute and chronic models of inflammation) without any side effect on gastric mucosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号